计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (17): 195-199.

• 信号处理 • 上一篇    下一篇

基于SVD和TKEO的轴承振动信号特征提取

李  葵,范玉刚,吴建德   

  1. 1.昆明理工大学 信息工程与自动化学院,昆明 650500
    2.云南省矿物管道输送工程技术研究中心,昆明 650500
  • 出版日期:2014-09-01 发布日期:2014-09-12

Feature extraction of bearing vibration signal based on SVD and TKEO

LI Kui, FAN Yugang, WU Jiande   

  1. 1.Faculty of Information Engineering & Automation, Kunming University of Science and Technology, Kunming 650500, China
    2.Engineering Research Center for Mineral Pipeline Transportation, YN, Kunming 650500, China
  • Online:2014-09-01 Published:2014-09-12

摘要: 为了解决滚动轴承振动信号中微弱故障信息难以提取的问题,提出了一种基于奇异值分解(Singular Value Decomposition,SVD)和Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)的轴承振动信号特征提取方法。采用SVD将突变信息从背景噪声和光滑信号中分离,提取信号的突变信息;利用TKEO计算突变信息的瞬时能量,对该能量信号进行频谱分析,从而提取出轴承振动信号的能量频谱特征,用于故障检测。将该方法应用于轴承外圈、内圈局部故障状态下的振动信号特征提取,利用特征信息能够准确检测并识别出故障类型,表明了该方法的可行性和有效性。

关键词: 奇异值分解, Teager能量算子, 故障诊断

Abstract: In order to solve the difficult problem in?extracting?the weak fault information from rolling bearing vibration signal, a?method of feature extraction of bearing vibration signal based on Singular Value Decomposition(SVD) and Teager-Kaiser Energy Operator(TKEO) is proposed. The abrupt information is extracted from satin signal and noise by using the SVD. It calculates the instantaneous?energy of abrupt information by using TKEO, and the energy information is analyzed to gain the feature of the energy frequency spectrum of bearing vibration signal that used for fault detection. The method is used to extract the fault feature of bearing vibration signal with outer and inner circle faults, and the?fault type can be?accurately detected and identified by feature information. The result shows that the method presented here is feasible?and valid.

Key words: Singular Value Decomposition(SVD), Teager-Kaiser Energy Operator(TKEO), fault diagnosis