计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (7): 162-165.

• 图形图像处理 • 上一篇    下一篇

基于改进型GLVQ算法的车型分类研究

胡耀民,熊  昕   

  1. 广州番禺职业技术学院 信息工程学院,广州 510483
  • 出版日期:2014-04-01 发布日期:2014-04-25

Vehicle classification research based on improved GLVQ algorithm

HU Yaomin, XIONG Xin   

  1. School of Information Engineering, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
  • Online:2014-04-01 Published:2014-04-25

摘要: 学习向量量化(LVQ)和泛化学习向量量化(GLVQ)算法都是采用欧氏距离作为相似性度量函数, 忽视了向量各维属性的数据取值范围,从而不能区分各维属性在分类中的不同作用。针对该问题,使用一种面向特征取值范围的向量相似性度量函数,对GLVQ进行改进,提出了GLVQ-FR算法。使用视频车型分类数据进行改进型GLVQ和LVQ2.1、GLVQ、GRLVQ、GMLVQ等算法的对比实验,结果表明:GLVQ-FR算法在车型分类中具有较高的分类准确性、运算速度和真实生产环境中的可用性。

关键词: 车型分类, 学习向量量化, 相似性度量, 模式识别

Abstract: Euclidean distance is used as a vector similarity measure function in LVQ and GLVQ, which neglects the differences of feature data range and affects classification accuracy of them. Aimed at this problem, a kind of vector similarity measure function with feature data range taken into account is proposed, and a new algorithm named as GLVQ-FR based on this measure function and GLVQ is put forward. Using 8 data sets of the UCI machine learning repository, the comparative experiments of the GLVQ-FR with the LVQ2.1, GLVQ, GRLVQ and GMLVQ algorithms are carried out, results show that the classification accuracy and computation speed of GLVQ-FR algorithm are higher than the others. The algorithm usability and high performance in real production environment is verified through the video vehicle classification data set.

Key words: vehicle classification, Learning Vector Quantization(LVQ), similarity metric, pattern recognition