计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (6): 182-185.

• 图形图像处理 • 上一篇    下一篇

用于纹理特征提取的改进的LBP算法

刘  豪,杨永全,郭仙草,宋志浩   

  1. 西安工程大学 计算机科学学院,西安 710048
  • 出版日期:2014-03-15 发布日期:2015-05-12

Improved LBP used for texture feature extraction

LIU Hao, YANG Yongquan, GUO Xiancao, SONG Zhihao   

  1. School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China
  • Online:2014-03-15 Published:2015-05-12

摘要: 针对现有的纹理特征提取方法计算复杂度高的问题,利用局部二值模式(LBP)算法思想简单、计算复杂度小的优势,在已有的完整LBP(CLBP)算法基础上,提出了一种改进的CLBP算法(ICLBP)。ICLBP算法保留了CLBP算法中CLBP_S,而对CLBP_M算子、CLBP_C算子进行了改进,提出一个新的纹理描述算子ICLBP_T。ICLBP算法更全面地描述了局部窗口的纹理特征,同时有效解决了CLBP算法中CLBP_M算子对灰度分布不均敏感的问题。通过对Outex、CURet数据库的数据分类实验,结果表明,相比于已有的LBP算法,ICLBP算法的分类精度有了明显的改进,同时ICLBP算法中ICLBP_SCT特征具有较低的特征维数,具有较好的实用价值。

关键词: 纹理特征提取, 局部二值模式, 完整局部二值模式算法(CLBP), 改进的完整局部二值模式算法(ICLBP)

Abstract: For most texture feature extraction method, the problem of high computational complexity always exists. An Improved Complete Local Binary Pattern algorithm(ICLBP) is proposed based on Complete LBP(CLBP). ICLBP preserves the CLBP_S in CLBP, while makes an improvement on CLBP_M and CLBP_C, and proposes a new texture description operator ICLBP_T. ICLBP can describe the local texture feature in a comprehensive way, and the problem that CLBP_M operator in CLBP is sensitive to uneven distribution of gray, is well solved in ICLBP. The classification results on Outex and CURet image databases suggest that, compared to the existing LBP algorithm, ICLBP has obtained a higher classification accuracy, meanwhile, the ICLBP_SCT feature  in ICLBP has a lower feature dimension and better practical value.

Key words: texture feature extraction, local binary patterns, Complete Local Binary Pattern algorithm(CLBP), Improved Complete Local Binary Pattern algorithm(ICLBP)