计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (23): 119-121.

• 图形图像处理 • 上一篇    下一篇

三向四次箱样条曲面与Bézier曲面的光滑拼接

杨联强,王  东   

  1. 安徽大学 数学科学学院,合肥 230601
  • 出版日期:2013-12-01 发布日期:2016-06-12

Smooth connection between 3-direction quartic box spline surfaces and Bézier surfaces

YANG Lianqiang, WANG Dong   

  1. School of Mathematical Science, Anhui University, Hefei 230601, China
  • Online:2013-12-01 Published:2016-06-12

摘要: 以二元四次多项式在三角域和矩形域上的Bézier形式的Blossom为工具,给出了当给定一张三向四次箱样条曲面时,能与之[C0、][C1、][C2]拼接的三边或矩形Bézier曲面的控制顶点所要满足的一个显式表示的充分条件。这一结果在使用三向四次箱样条曲面或Loop细分曲面造型,而又需要构造Bézier曲面与之拼接或补洞时,具有理论和实际应用价值。

关键词: 三向四次箱样条曲面, Bé, zier曲面, 光滑拼接

Abstract: Using bivariate quartic polynomial’s Blossom over triangular and rectangular domains, when a 3-direction quartic box spline surface is given, in order to make triangular or rectangular Bézier surface  to be [C0、][C1、][C2]connected with it , one kind of explicit sufficient condition of the Bézier surface’s control points which should be subjected is discussed. When geometric modeling with 3-direction quartic box spline surface or Loop subdivision surface, this conclusion is valuable for making Bézier surface to be smooth connected with the modeling surface or to fill holes.

Key words: 3-direction quartic box spline surface, Bézier surface, smooth connection