计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (18): 180-186.

• 图形图像处理 • 上一篇    下一篇

一类双参数类四次三角Bézier曲线及其扩展

喻德生1,徐迎博1,曾接贤2   

  1. 1.南昌航空大学 数学与信息科学学院,南昌 330063
    2.南昌航空大学 软件学院,南昌 330063
  • 出版日期:2013-09-15 发布日期:2013-09-13

A class of quasi-quartic trigonometric polynomial Bézier curves with double parameters and its extension

YU Desheng1, XU Yingbo1, ZENG Jiexian2   

  1. 1.School of Mathematics and Information Sciences, Nanchang Hangkong University, Nanchang 330063, China
    2.School of Software, Nanchang Hangkong University, Nanchang 330063, China
  • Online:2013-09-15 Published:2013-09-13

摘要: 给出了一类双参数的类四次三角Bézier曲线及其扩展曲线的定义,得到了该类曲线及其扩展曲线的性质,给出了两段双参数的类四次三角Bézier曲线[G1(C1),G2(C2)]及两段扩展曲线[G1(C1),G2(C2)]光滑拼接的充要条件,并讨论了这两类曲线的应用。算例表明,该类曲线及其扩展曲线在曲线造型,特别是在非对称图形的造型中,具有很强的描述能力。

关键词: 类四次三角Bé, zier曲线, 形状参数, 扩展, 光滑拼接

Abstract: A class of quasi-quartic trigonometric polynomial Bézier curves with double parameters and its extension are defined. The properties of the class of the curves and its extension are obtained, and the necessary and sufficient conditions for [G1(C1),][G2(C2)]continuously joining with two segments of quasi-quartic trigonometric polynomial Bézier curves and two extensions are given. The applications of them are discussed. Experimental examples show that the class of the curves and its extensions have stronger abilities in curve designing, especially in designing of non-symmetry figures.

Key words: quasi-quartic trigonometric polynomial Bézier curves, shape parameter, extension, continuously joining