计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (15): 171-174.

• 图形图像处理 • 上一篇    下一篇

融合DCT和LBP特征的表情识别

李  睿,赵  晓   

  1. 兰州理工大学 计算机与通信学院,兰州 730050
  • 出版日期:2013-08-01 发布日期:2013-07-31

Fusing DCT and LBP features for expression recognition

LI Rui, ZHAO Xiao   

  1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • Online:2013-08-01 Published:2013-07-31

摘要: 为了获得更好的面部表情特征,提出了一种融合离散余弦变换(Discrete Cosine Transform,DCT)特征和局部二值模式(Local Binary Pattern,LBP)特征的表情特征提取方法。该方法将人脸图像经过DCT后所获得的低频系数作为表情的整体特征;通过对人脸图像进行分块,计算每个子块的LBP直方图,将这些LBP直方图连接起来形成LBP特征,对该LBP特征使用拉普拉斯特征映射(Laplacian Eigenmaps,LE)降维后得到表情的局部特征。将得到的整体特征和局部特征进行加权融合,使用最近邻分类器进行分类。在JAFFE和Cohn-Kanade表情库上的实验结果表明,该方法比单独使用LBP或者DCT特征,具有更好的效果。

关键词: 表情识别, 特征融合, 局部二值模式, 离散余弦变换

Abstract: In order to effectively extract facial expression feature, a novel method by fusing Discrete Cosine Transform(DCT) and Local Binary Pattern(LBP) features is proposed for expression recognition in this research. The primary information of the face image is centralized in a small number of DCT coefficients, which are used as the global feature of the expression. The face is divided regularly into small regions, from which LBP histograms are computed and concatenated into a LBP features. Subsequently, weight fusion operation is done on these results that are gotten and the nearest distance classification is used to distinguish each testing expression sample. The experiments on JAFFE and Cohn-Kanade expression database show the method proposed is more effective to represent facial expression feature than the single LBP or DCT feature.

Key words: expression recognition, feature fusion, Local Binary Pattern(LBP), Discrete Cosine Transform(DCT)