计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (22): 35-36.
• 研究、探讨 • 上一篇 下一篇
左卫兵,张 嘎
收稿日期:
修回日期:
出版日期:
发布日期:
ZUO Weibing,ZHANG Ga
Received:
Revised:
Online:
Published:
摘要: 利用势为5的均匀概率空间的无穷乘积在一种五元格值逻辑系统中引入了公式的真度概念,给出了真度的一些推理规则,证明了全体公式的真度值之集在[0,1]上是稠密的,给出了全体公式真度的表达通式,为在五元格值逻辑系统中建立近似推理理论提供了一种可能的框架。
关键词: 格值逻辑, 真度, 推理规则, 稠密性
Abstract: Based on the infinite product of evenly distributed probability space with number of 5,the theory of truth degree in a five lattice-valued logic system is introduced.Some inference rules are given.It is proved that the set of truth degree of formulae is dense in [0,1],and the expressions of truth degree are obtained.Therefore a possible framework for establishing approximate theory of five lattice-valued logic system is proposed.
Key words: lattice-valued logic system, truth degree, inference rule, density
左卫兵,张 嘎. 一种五元格值逻辑上命题真度的分布[J]. 计算机工程与应用, 2011, 47(22): 35-36.
ZUO Weibing,ZHANG Ga. Distribution of propositional truth degree in five lattice-valued logic system[J]. Computer Engineering and Applications, 2011, 47(22): 35-36.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I22/35