计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (20): 231-233.

• 工程与应用 • 上一篇    下一篇

基于免疫神经网络的航空设备故障预测研究

胡雷刚1,肖明清1,谢 斓2   

  1. 1.空军工程大学 自动测试系统实验室,西安 710038
    2.解放军四五八医院 信息科,广州 510600
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-07-11 发布日期:2011-07-11

Prognostics for aeronautic equipments based on immune neural network

HU Leigang1,XIAO Mingqing1,XIE Lan2   

  1. 1.ATS Lab,Air Force Engineering University,Xi’an 710038,China
    2.Department of Information,458th Hospital of PLA,Guangzhou 510600,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-07-11 Published:2011-07-11

摘要: 为解决武器装备全寿命周期费用高、经济可承受性差的难题,开展航空装备的故障预测技术研究。采用免疫算法改进隐含层激励函数得到免疫神经网络,用以进行装备特征参数的跟踪预测,结果表明免疫算法改进的神经网络可在故障前3小时实现预测,较BP网络性能有较大改善。

关键词: 故障预测, 免疫算法, 免疫神经网络

Abstract: To reduce the entire life cycle cost of weapon system and enhance their affordability,technology of fault prediction is studied for aeronautic equipment.The immune algorithm is used to ameliorate the activation function of hide layer.Then Immune Neural Network(INN) is got to track and predict the characteristics parameters of equipments.Results show that the improved neural networks can archive fault prediction 3 hours before the time point of faults respectively,and the networks’ performances are improved significantly compared with the BP neural network.

Key words: fault prediction, Immune Algorithm(IA), Immune Neural Network(INN)