计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (18): 183-185.

• 图形、图像、模式识别 • 上一篇    下一篇

团块与Mean-Shift结合的局部遮挡目标跟踪

戴庆成,冯晓毅,刘 娟   

  1. 西北工业大学 电子信息学院,西安 710072
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-06-21 发布日期:2011-06-21

Tracking method for object of partial occlusion based on combination of blob modeling and Mean-Shift

DAI Qingcheng,FENG Xiaoyi,LIU Juan   

  1. School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-06-21 Published:2011-06-21

摘要: 传统的基于Mean-Shift的目标跟踪方法利用目标的全局特征进行跟踪,在局部遮挡情况下跟踪效果不佳。提出一种基于团块建模和Mean-Shift相结合的利用目标局部特征的运动目标跟踪方法,对目标进行团块建模,利用Mean-shift算法对各团块进行跟踪,在此基础上确定目标新位置。该方法能够在目标发生局部遮挡时,自动选取未被遮挡的团块的跟踪结果来确定目标的位置。为了提高方法对背景干扰的鲁棒性,采用背景加权的Mean-Shift算法。实验结果表明:该方法在局部遮挡的情况下可较好地进行目标跟踪,跟踪效果优于报导的基于Mean-Shift的方法。

关键词: 目标跟踪, 局部遮挡, 团块, Mean-Shift算法

Abstract: Traditional Mean-Shift based object tracking adopts whole features for tracking,and is hard to track well under object occlusion.A new local feture based method is proposed,which combines the blob modeling and mean-shift together.Firstly,the blob modeling for the tracked object is built,and then each blob is tracked by the Mean-Shift method.Finally the new position of object is determined.The proposed method can select unoccluded blob for object tracking when occlusion occurs.The background-weighted Mean-Shift method is adopted to improve the robustness to the background disturbance.Experimental results show that the method can track the object exactly under the circumstance of partial occlusion,and the performance is better than that of traditional Mean-Shift based method.

Key words: object tracking, partial occlusion, blob, Mean-Shift algorithm