计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (10): 38-40.
• 研究、探讨 • 上一篇 下一篇
陈治明
收稿日期:
修回日期:
出版日期:
发布日期:
CHEN Zhiming
Received:
Revised:
Online:
Published:
摘要: 支持向量机是一种性能优越的机器学习算法,而其参数的选择对建模精度和泛化性能等有着重要的影响,也是目前机器学习研究的一个重要方向。在简要介绍基本粒子群优化(PSO)算法的基础上,提出了一种量子粒子群优化算法,给出了其实现方式,并通过4个基准测试函数进行性能对比评价。基于这种量子粒子群优化算法,对最小二乘支持向量机(LS-SVM)的参数优化进行了研究。仿真结果表明,量子粒子群优化算法能给出很好的优化结果。
关键词: 量子粒子群, 最小二乘支持向量机, 基准测试, 参数优化
Abstract: Support Vector Machine(SVM) is a machine learning algorithm with good performance.The selection of its parameters has a great influence on its modeling accuracy and generalization performance,and it is an important area in machine learning research.Based on a brief introduction to basic Particle Swarm Optimization(PSO),a new quantum PSO algorithm is presented,as well as its implementation.Performance comparison with classic PSO algorithm is made through 4 benchmark test functions.Based on the proposed quantum PSO,the optimum parameter selection of Least Squares SVM(LS-SVM) is studied.Simulation results show that the presented quantum PSO algorithm can achieve good performance.
Key words: quantum Particle Swarm Optimization(PSO), Least Squares Support Vector Machine(LS-SVM), benchmark test, parameter optimization
陈治明. 改进的粒子群算法及其SVM参数优化应用[J]. 计算机工程与应用, 2011, 47(10): 38-40.
CHEN Zhiming. Improved PSO and its application to SVM parameter optimization[J]. Computer Engineering and Applications, 2011, 47(10): 38-40.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I10/38