计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (8): 128-130.

• 数据库、信号与信息处理 • 上一篇    下一篇

多尺度的谱聚类算法

施培蓓,郭玉堂,胡玉娟,俞 骏   

  1. 合肥师范学院 公共计算机教学部,合肥 230601
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-11 发布日期:2011-03-11

Multiscale spectral clustering algorithm

SHI Peibei,GUO Yutang,HU Yujuan,YU Jun   

  1. Department of Public Computer Teaching,Hefei Normal University,Hefei 230601,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-11 Published:2011-03-11

摘要: 提出了一种多尺度的谱聚类算法。与传统谱聚类算法不同,多尺度谱聚类算法用改进的k-means算法对未经规范的Laplacian矩阵的特征向量进行聚类。与传统k-means算法不同,改进的k-means算法提出一种新颖的划分数据点到聚类中心的方法,通过比较聚类中心与原点的距离和引入尺度参数来计算数据点与聚类中心的距离。实验表明,改进算法在人工数据集上取得令人满意的结果,在真实数据集上聚类结果较优。

关键词: 聚类, 谱聚类, k-means, 多尺度, 特征向量

Abstract: A multiscale spectral clustering algorithm is proposed.Unlike the traditional spectral clustering algorithm,multiscale spectral clustering algorithm uses a modified k-means algorithm to cluster unstandardized Laplacian matrix eigenvector.Unlike the traditional k-means algorithm,the improved algorithm proposes a novel method to partition data points to cluster centers,which calculates the distance of data points and cluster centers through comparing the distance of cluster centers and origin and introducing scale parameters.Experiments show that it can acquire satisfactory results on artificial data sets,but also it can get better cluster results on real data sets.

Key words: clustering, spectral clustering, k-means, multiscale, eigenvector