计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (7): 218-221.

• 工程与应用 • 上一篇    下一篇

面向城市道路交通状态估计的数据融合研究

徐 涛1,2,3,杨晓光2,徐爱功1,张明月1   

  1. 1.辽宁工程技术大学 测绘与地理科学学院,辽宁 阜新 123000
    2.同济大学 智能交通运输系统(ITS)研究中心,上海 200092
    3.上海济祥智能交通科技有限公司,上海 200092
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-01 发布日期:2011-03-01

Urban road traffic state estimation based on data fusion

XU Tao1,2,3,YANG Xiaoguang2,XU Aigong1,ZHANG Mingyue1   

  1. 1.School of Geomatics,Liaoning Technical University,Fuxin,Liaoning 123000,China
    2.ITS Research Center,Tongji University,Shanghai 200092,China
    3.Shanghai Jixiang Intelligent Transportation Technology Co.,Ltd.,Shanghai 200092,China

  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-01 Published:2011-03-01

摘要: 实时道路交通状态估计是ATMS和ATIS的重要内容。布设于城市道路网络中的各类检测器提供了丰富实时的动态信息。针对目前我国各检测器间相互独立形成信息孤岛、数据参数多样、结构迥异、采样周期和精度不一等现状,采用贝叶斯估计、模糊逻辑等数据融合方法建立多源异构交通信息三层次融合体系,得到精度更高、可靠性更强的交通信息。实例证明,数据融合适用于城市道路交通状态估计。

关键词: 智能交通系统, 交通状态估计, 数据融合, 贝叶斯估计, 模糊逻辑

Abstract: Real time traffic state estimation is an important content of ATMS and ATIS.Abundant traffic data are obtained from detectors located at urban road networks.Currently in China,data from multiple independent resources which form the phenomenon of information islands have various parameters,different structure and distinct interval time and accuracy.This study utilizes Bayesian and fuzzy logic establishes three-level-structure traffic data fusion system to get more accurate and reliable traffic information.The experimental results show that data fusion is applicable to traffic state estimation.

Key words: Intelligent Transportation System(ITS), traffic state estimation, data fusion, Bayesian estimation, fuzzy logic