计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (25): 240-241.DOI: 10.3778/j.issn.1002-8331.2009.25.074

• 工程与应用 • 上一篇    下一篇

改进粒子群优化算法在PID参数整定中的研究

李立礼1,2,王 强3,王晓霄1   

  1. 1.广西师范大学 物理与电子工程学院,广西 桂林 541004
    2.广西贺州学院 物理与电子信息系,广西 贺州 542800
    3.广西师范大学 计算机与信息工程学院,广西 桂林 541004
  • 收稿日期:2008-07-31 修回日期:2008-10-06 出版日期:2009-09-01 发布日期:2009-09-01
  • 通讯作者: 李立礼

Research on tuning PID parameters based on improved particle swarm optimization algorithms

LI Li-li1,2,WANG Qiang3,WANG Xiao-xiao1   

  1. 1.College of Physics and Electronic Information Engineering,Guangxi Normal University,Guilin,Guangxi 541004,China
    2.Department of Physics and Electronic Information,Hezhou University,Hezhou,Guangxi 542800,China
    3.College of Computer and Information Engineering,Guangxi Normal University,Guilin,Guangxi 541004,China
  • Received:2008-07-31 Revised:2008-10-06 Online:2009-09-01 Published:2009-09-01
  • Contact: LI Li-li

摘要: 针对粒子群优化算法(PSO)容易出现早熟收敛的问题,提出一种改进的粒子群优化算法(IMPSO)。该算法通过引入粒子群聚合度和变异的思想,能很好避免早熟,提高粒子全局搜索能力。将此改进的粒子群优化算法用于PID控制器的参数整定,具有操作简单,寻优快速等优点。

关键词: 粒子群优化算法, 变异, 比例、积分、微分(PID)

Abstract: In order to avoid the premature convergence of the Particle Swarm Optimization(PSO) algorithm,a modified PSO algorithm is proposed.Aggregate degree of particle swarm and mutation idea are introduced to upgrade the performance of the new algorithm.As an example,the improved algorithm is used for tuning PID controller parameters and the experiment result has proved its efficiency.

Key words: particle swarm optimization, mutation, Proportion Integration Differentiation(PID)