计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (11): 217-219.
蔡满军,刘金存,张学健
CAI Man-jun,LIU Jin-cun,ZHANG Xue-jian
摘要: 随着电力电子技术,微电子技术和新型电机控制理论的快速发展,无刷直流电动机(BLDCM)得以迅速推广。BLDCM不仅保持了直流电动机的动静态调速性能,而且避免了有刷结构带来的固有缺陷,具有体积小、效率高、控制简单等优点。无刷直流调速系统快速性、稳定性和鲁棒性的好坏成为决定电机性能的重要指标。介绍一种将神经网络控制方法应用于一个要求更快更精确的BLDCM控制系统以提高动态响应和鲁棒性。神经网络自适应控制算法的使用,使得参数整定无需繁琐的手动过程,能够根据系统工况变化自动辨识被控参数、自动整定控制器参数,便于显著提高控制精度,减少调节时间,使控制过程具有较高的控制品质。神经网络自适应控制算法采用Brandt-Lin算法,并且对激活函数、学习速率做了一些改进,提高了控制速度及精度。在此算法中还加入了一个非线性函数提高了此神经网络的在高阶系统中的适应性。