计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (24): 12-14.

• 博士论坛 • 上一篇    下一篇

基于本体的向量空间模型的压缩算法

袁铭蔚1,蒋 平1,2   

  1. 1.同济大学 电信学院控制理论与控制科学系,上海 200092
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-08-21 发布日期:2007-08-21
  • 通讯作者: 袁铭蔚

Compression algorithm for ontology based Vector Space Model

YUAN Ming-wei1,JIANG Ping1,2   

  1. 1.Department of Control Theory and Control Science,Tongji University,Shanghai 200092,China
    2.Department of Cybernetics and Virtual Systems,University of Bradford,Bradford,UK
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-08-21 Published:2007-08-21
  • Contact: YUAN Ming-wei

摘要: 采用本体(Ontology)为向量空间模型提供更为丰富、详细的概念空间,在本体的支持下,文档中的术语不再被孤立地看成关键词,而是彼此间有了一定的语义联系。以已获得丰富而详细的本体为前提,考虑当本体空间很大时,解决向量空间的高维数给计算带来复杂性与难度这一问题,提出基于HCA(Hierarchical Clustering Algorithm)的向量空间压缩算法。

关键词: 本体, 向量空间模型, 分层聚类算法, 语义距离

Abstract: In this paper,ontology based VSM is used to provide detailed and dependable concept space.With the support of ontology,two concepts are not standalone terms but meaning related.In this paper,the detailed and dependable ontology is the presupposition and HCA(Hierarchical Clustering Algorithm) is proposed to deal with computation complex and difficulty because of high dimensions of the vector space.

Key words: ontology, Vector Space Model(VSM), Hierarchical Clustering Algorithm(HCA), semantic distance