计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (35): 239-242.

• 工程与应用 • 上一篇    下一篇

新型SFCM算法及其在故障诊断中的应用

鲁 卿,冯金富,李 骞,钟咏兵   

  1. 空军工程大学 工程学院,西安 710038
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-12-11 发布日期:2007-12-11
  • 通讯作者: 鲁 卿

New algorithm for Semi-Fuzzy C-Means clustering and its application on fault diagnosis

LU Qing,FENG Jin-fu,LI Qian,ZHONG Yong-bing   

  1. Engineering Institute of Air Force Engineering University,Xi’an 710038,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-12-11 Published:2007-12-11
  • Contact: LU Qing

摘要: 为提高故障诊断模式分类的实时性和准确性,采用阈值化类内距离的方法,研究了一种新型SFCM聚类算法,数据验证了此算法较传统FCM算法在收敛速度和聚类精度方面的较好表现,以机载武器控制系统信息通道为诊断对象,采用该方法对通道进行了样本无监督分类验证和故障模式识别诊断试验,结果表明新型的SFCM聚类算法能对信息通道故障模式进行正确的分类识别。

关键词: SFCM, 聚类算法, 故障诊断, 信息通道

Abstract: A Semi-Fuzzy C-Means algorithm based on revised Euclidean distance is proposed to improve the real-time capability and precision in fault pattern classified.The experimental results show that the proposed algorithm is found better than FCM clustering algorithms in convergence and precision.The example of fault diagnosis in an airborne weapon control system’s information channels is given.The experimental test of unsupervised clustering and fault pattern recognize to the information channels was developed by the new SFCM algorithm.The results show that the new algorithm can recognize adaptively and precisely in fault diagnosis of information channels.

Key words: Semi-Fuzzy C-Means(SFCM), clustering algorithm, fault diagnosis, information channels