计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (34): 204-206.
• 工程与应用 • 上一篇 下一篇
唐 艳,汤井田
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
TANG Yan,TANG Jing-tian
Received:
Revised:
Online:
Published:
Contact:
摘要: 在脑-机接口的研究中分类识别技术占有重要地位。介绍了一种方法,用于对单次信号的分类。这种方法主要思想是将共空域子空间分解和支持向量机相结合,以便提取信号特征。该方法被用于“BCI Competition 2003”第IV数据包上,分类正确率达89%。
关键词: 脑电信号, 脑-机接口, 支持向量机, 共空域子空间分解
Abstract: Identification and classification technology plays an important part in study of the BCI system.Presents an algorithm for classifying single-trial electroencephalogram(EEG).It combines common spatial subspace decomposition with support vector machine to extract features from multichannel EEG.This algorithm is applied to the data set IV of “BCI Competition 2003” with a classification accuracy of 89% on the test set.
Key words: electroencephalogram, Brain-Computer Interface(BCI), Support Vector Machine(SVM), Common Spatial Subspace Decomposition(CSSD)
唐 艳,汤井田. 基于支持向量机的脑电信号中左右手判别[J]. 计算机工程与应用, 2007, 43(34): 204-206.
TANG Yan,TANG Jing-tian. Distinguishing between left and right finger movement from EEG using SVM[J]. Computer Engineering and Applications, 2007, 43(34): 204-206.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I34/204