计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (36): 34-36.DOI: 10.3778/j.issn.1002-8331.2010.36.009

• 研究、探讨 • 上一篇    下一篇

引入学习机制的自适应遗传算法设计与实现

朱延广,许永平,周 旋,朱一凡   

  1. 国防科技大学 信息系统与管理学院,长沙 410073
  • 收稿日期:2010-03-15 修回日期:2010-05-11 出版日期:2010-12-21 发布日期:2010-12-21
  • 通讯作者: 朱延广

Research on adaptive genetic algorithm injected learning mechanism

ZHU Yan-guang,XU Yong-ping,ZHOU Xuan,ZHU Yi-fan   

  1. School of Information System and Management,National University of Defense Technology,Changsha 410073,China
  • Received:2010-03-15 Revised:2010-05-11 Online:2010-12-21 Published:2010-12-21
  • Contact: ZHU Yan-guang

摘要: 目前遗传算法研究中,缺乏对历代群体进化规律的充分利用,因此引入学习机制,设计反映个体自主学习进化规律的自适应算子,并且结合现有的改进遗传算法,提出一种新的自适应遗传算法。最后以两个通用的测试函数为例对算法进行性能测试,结果表明,在采用相同参数的条件下,自适应算子能够以较低的代价提高遗传算法的收敛速度,并获得更好的最终优化结果。

关键词: 学习机制, 遗传算法, 自适应算子, 自适应遗传算法

Abstract: The genetic operator is an important factor affecting the optimization effectiveness of genetic algorithm.However,among all the research of genetic algorithm,the potential evolutional rule under all optimal individuals is not being fully utilized yet.Thus,an adaptive operator is designed to meet this shortfall,and combination with existing improved genetic algorithm,a design process of genetic algorithm applying the adaptive operator is presented.Finally,two universal test functions are used to demonstrate the capability of the improved algorithm.The result indicates that the adaptive operator can achieve better convergence speed and optimum solution of genetic algorithm with the same parameters.

Key words: learning mechanism, genetic algorithm, adaptive operator, adaptive genetic algorithm

中图分类号: