计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (28): 233-235.DOI: 10.3778/j.issn.1002-8331.2008.28.076
刘 贵1,于伟东1,2
LIU Gui1,YU Wei-dong1,2
摘要: 在标准化企业粗纱工序生产数据的基础上,针对神经网络输入端参数组会影响最终预报结果的特点,提出分别利用相关性分析法和多元逐步回归分析法筛选对粗纱CV值(R1)和单重(R2)影响较大的参数。将筛选出的参数按重要程度由大到小依次输入BP网络,采用多输入单输出子网组方式建立了4个网络模型。训练好的模型经10组检验样本检验,其预报结果和实测结果的平均相对误差(MEP)都低于4%。用20组未参与建模的验证数据进行预报表明:相关性分析法筛选参数建立的模型对R1和R2的绝对值平均预报精度分别为2.63%和2.98%,且预报值与实测值间的相关系数分别为0.884和0.958,这些指标都优于采用多元逐步回归分析法筛选参数建立的模型。