计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (29): 217-219.

• 工程与应用 • 上一篇    下一篇

基于支持向量机方法的医学图像分割

廖国红1,齐 军2,黄光林3   

  1. 1.武汉理工大学 余家头校区交通学院,武汉 430063
    2.武汉数字工程研究所,武汉 430074
    3.武汉国测科技有限公司,武汉 430223
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-10-11 发布日期:2007-10-11
  • 通讯作者: 廖国红

Medical image segmentation based on Support Vector Machine approach

LIAO Guo-hong1,QI Jun2,HUANG Guang-lin3   

  1. 1.School of Transportation,Wuhan University of Technology,Wuhan 430063,China
    2.Wuhan Digital Engineering Institute,Wuhan 430074,China
    3.Wuhan Guoce Science & Technology Co.,LTD.,Wuhan 430223,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-10-11 Published:2007-10-11
  • Contact: LIAO Guo-hong

摘要: 医学图像分割是图像分割研究领域的难点问题。支持向量机方法被看作是对传统学习分类方法的一个好的替代,特别在小样本、高维情况下,具有较好的泛化性能。论文采用支持向量机方法对医学图像进行分割研究。实验结果表明,支持向量机方法是一种很有前景的医学图像分割技术。

关键词: 医学图像分割, 支持向量机, 统计学习理论, 泛化性能

Abstract: Medical image segmentation is a difficult problem in the field of image segmentation.Support Vector Machine approach is considered a good candidate because of its good generalization performance,especially when the number of training samples is very small and the dimension of feature space is very high.This paper investigates the segmentation of medical image based on Support Vector Machine approach.Experimental results show that Support Vector Machine approach is a promising technique for medical image segmentation.

Key words: medical image segmentation, Support Vector Machine, Statistical Learning Theory, generalization performance