计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (28): 187-189.
杨晓伟1,2,闫 丽1
YANG Xiao-wei1,2,YAN Li1
摘要: 支持向量机算法对噪声点和异常点是敏感的,为了解决这个问题,人们提出了模糊支持向量机,但其中的模糊隶属度函数需要人为设置。提出基于模糊分割的支持向量机分类器。在该算法中,首先根据聚类有效性用模糊c-均值聚类分别对训练集中的正负类数据聚类;然后,选择距离最近的c个聚类对构成c个二分类问题;最后,对c个二分类器用加权平均策略得到最终分类结果。为了验证所提算法的有效性,对三个UCI数据集进行了数值实验,结果表明,该算法能有效提高带噪声点和异常点数据集分类的预测精度。