计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (28): 162-165.
金 萍1,2,宗 瑜1,3,江 贺3,张宪超3,李明楚3
JIN Ping1,2,ZONG Yu1,3,JIANG He3,ZHANG Xian-chao3,LI Ming-chu3
摘要: FCM是经典的聚类算法,广泛地应用于模式识别、数据挖掘等领域。FCM算法是一种梯度下降优化算法,对初始解敏感并且容易获得局部最优解。空间平滑能够避免启发式局部搜索算法掉入局部最优解。采用空间平滑策略构造一系列光滑程度不同的搜索空间,在不同的搜索空间中执行FCM算法,并利用前层搜索空间的聚类结果来引导本层搜索空间的聚类。FCMS(FCM based
on multi-Space)能够跳过局部最优解的“陷阱”,增大获得全局最优解的概率,达到提高聚类质量的目的。给出了等距法空间平滑策略,并通过实验对比了FCMS算法与FCM算法的聚类质量。实验结果表明,空间平滑对FCM算法非常有效。