计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (32): 57-59.DOI: 10.3778/j.issn.1002-8331.2008.32.017

• 理论研究 • 上一篇    下一篇

简化的粒子群优化快速KNN分类算法

李 欢1,焦建民2   

  1. 1.宁波大红鹰职业技术学院 软件学院,浙江 宁波 315175
    2.南京航空航天大学 民航学院,南京 210016
  • 收稿日期:2007-12-17 修回日期:2008-03-20 出版日期:2008-11-11 发布日期:2008-11-11
  • 通讯作者: 李 欢

Improved simplified PSO KNN classification algorithm

LI Huan1,JIAO Jian-min2   

  1. 1.School of Software Engineering,Ningbo Dahongying Vocational Technology College,Ningbo,Zhejiang 315175,China
    2.Civil Aviation College,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China
  • Received:2007-12-17 Revised:2008-03-20 Online:2008-11-11 Published:2008-11-11
  • Contact: LI Huan

摘要: 提出了一种有效的k近邻分类文本分类算法,即SPSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练集中随机搜索.在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,并且去除了粒子群进化过程中粒子速度的影响,从而可以更快速地找到测试样本的k个近邻.通过验证算法的有效性表明,在查找k近邻相同时,SPOSKNN算法的分类精度高于基本KNN算法。

关键词: K近邻分类器, 粒子群优化算法, 相似度

Abstract: An efficient algorithm SPSOKNN is proposed to reduce the computational complexity of KNN text classification algorithm,it is based on particle swarm optimization which searches randomly within training document set.During the procedure for searching k nearest neighbors of tested sample,those document vectors that are impossible to be the k closest vectors are kicked out quickly.And removing PSO evolutionary process of particle velocity impact,thus we can more rapidly find the k closest vectors of test samples.By verifying the validity of algorithm,finding the same k nearest neighbors,classification accuracy of SPSOKNN algorithm is higher than KNN algorithm.

Key words: K Nearest Neighbor(KNN) classifier, Particle Swarm Optimization(PSO), similarity