计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (1): 170-175.DOI: 10.3778/j.issn.1002-8331.2009.01.053

• 图形、图像、模式识别 • 上一篇    下一篇

基于学习的人脸图像超分辨率重建方法

郑梅兰,章品正,郭伟伟,鲍旭东   

  1. 东南大学 计算机科学与工程学院 影像科学与技术实验室,南京 210096
  • 收稿日期:2008-06-11 修回日期:2008-08-28 出版日期:2009-01-01 发布日期:2009-01-01
  • 通讯作者: 郑梅兰

Learning-based super-resolution reconstruction of face image

ZHENG Mei-lan,ZHANG Pin-zheng,GUO Wei-wei,BAO Xu-dong   

  1. Lab of Image Science and Technology,Department of Computer Science and Engineering,Southeast University,Nanjing 210096,China
  • Received:2008-06-11 Revised:2008-08-28 Online:2009-01-01 Published:2009-01-01
  • Contact: ZHENG Mei-lan

摘要: 提出一种针对正面人脸图像的超分辨率重建方法,通过学习人脸图像梯度的空间分布特性,获取梯度先验知识;通过结合贝叶斯最大后验概率估计理论,采用最速下降优化方法得到高分辨率人脸图像。实验结果表明,该方法在仅输入2—3幅低分辨率图像的情况下即可重建出具有较佳高频细节的超分辨率图像。

关键词: 超分辨率重建, 贝叶斯最大后验概率估计, 基于学习, 人脸图像, 最速下降优化

Abstract: Propose an algorithm that learned a prior on the spatial distribution of the images gradient for frontal images of faces,and then incorporated such a prior into the Maximum a Posterior Estimate(MAPE) algorithm.To get a single global minimum,use a gradient descent algorithm.Experimental results demonstrate that the proposed method is effective in reconstructing the high-frequency components of the images.Furthermore,the method can convert a small number(2-3) of low-resolution images of a face into a single high-resolution image.

Key words: super-resolution, Maximum a Posterior Estimate(MAPE), learning-based, faces image, gradient descent