计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (15): 22-28.DOI: 10.3778/j.issn.1002-8331.1805-0203
黄吉庆,王丽会,秦 进,程欣宇,张 健,李 智
HUANG Jiqing, WANG Lihui, QIN Jin, CHENG Xinyu, ZHANG Jian, LI Zhi
摘要: 为了解决超分辨率图像重建过程中无法同时降低平滑区域噪声和保持图像细节的问题,结合改进的非局部变分(NLTV)和全变分(TV)正则项方法提出一种新的超分辨率重建算法。首先,根据图像重尾分布特性,结合高斯分布、拉普拉斯分布及柯西分布改进了传统NLTV正则项系数,提出了改进的ANLTV正则项。然后利用ANLTV正则项基于分裂Bregman算法重建了初始的高分辨率图像。最后结合TV正则项对重建的高分辨率图像进行去模糊操作,进而得到最终的超分辨率图像重建结果。为验证所提算法的性能,分别利用该算法与传统的TV和NLTV算法进行超分辨率图像重建并对比。实验结果表明,所提出的方法相比于传统的TV和NLTV重建算法,其峰值信噪比、信噪比和结构相似度均有所提高,能够同时满足超分辨率图像重建过程中抑制噪声和保持边缘细节的需求。