计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (1): 183-185.DOI: 10.3778/j.issn.1002-8331.2009.01.056
桂叶晨,冯前进,刘 磊,陈武凡
GUI Ye-chen,FENG Qian-jin,LIU Lei,CHEN Wu-fan
摘要: Nvidia在GeForce 8系列显卡上推出的CUDA(统一计算设备架构)技术使GPU通用计算(GPGPU)从图形硬件流水线和高级绘制语言中解放出来,开发人员无须掌握图形学编程方法即可在单任务多数据模式(SIMD)下完成高性能并行计算。研究了CUDA的设计思想和编程方式,改进了基于双三次B样条曲面的图像缩放算法,使用多个线程将计算中耗时的B样条重采样部分改造成SIMD模式,并分别采用CUDA中全局存储器和共享存储器策略在CUDA上完成图像缩放的全过程。实验结果表明,基于CUDA的B样条曲面并行插值方法成功实现了硬件加速,相对于CPU上运行的B样条缩放算法,其执行效率明显提高,易于扩展,对于大规模数据处理呈现出良好的实时处理能力。