计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (10): 36-43.DOI: 10.3778/j.issn.1002-8331.1905-0008
朱超,吴素萍
ZHU Chao, WU Suping
摘要:
特征点检测被广泛应用于目标识别、跟踪及三维重建等领域。针对三维重建算法中特征点检测算法运算量大、耗时多的特点,对高斯差分(Difference-of-Gaussian,DoG)算法进行改进,提出特征点检测DoG并行算法。基于OpenMP的多核CPU、CUDA及OpenCL架构的GPU并行环境,设计实现DoG特征点检测并行算法。对hallFeng图像集在不同实验平台进行对比实验,实验结果表明,基于OpenMP的多核CPU的并行算法表现出良好的多核可扩展性,基于CUDA及OpenCL架构的GPU并行算法可获得较高加速比,最高加速比可达96.79,具有显著的加速效果,且具有良好的数据和平台可扩展性。