
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 72-89.DOI: 10.3778/j.issn.1002-8331.2503-0296
陈菁菁,王正武,兰文尉,张瑞宸,张亚东,崔展齐
出版日期:2025-12-01
发布日期:2025-12-01
CHEN Jingjing, WANG Zhengwu, LAN Wenwei, ZHANG Ruichen, ZHANG Yadong, CUI Zhanqi
Online:2025-12-01
Published:2025-12-01
摘要: 为确保嵌入式设备的安全可靠,需要对嵌入式设备固件进行充分测试,以及时发现并修复其中的漏洞。近年来,有研究人员将模糊测试技术应用到嵌入式设备固件的测试中,有效提高了测试效率。总结了2014年至2024年关于嵌入式设备固件模糊测试的相关研究成果,将嵌入式设备固件模糊测试过程分为三个阶段:预处理、测试环境建立、模糊测试执行,并分别介绍了各阶段的研究成果。讨论了现有嵌入式设备固件模糊测试的数据集和评估指标,并对嵌入式设备固件模糊测试未来的研究方向进行展望,为研究人员提供参考。
陈菁菁, 王正武, 兰文尉, 张瑞宸, 张亚东, 崔展齐. 嵌入式设备固件模糊测试技术综述[J]. 计算机工程与应用, 2025, 61(23): 72-89.
CHEN Jingjing, WANG Zhengwu, LAN Wenwei, ZHANG Ruichen, ZHANG Yadong, CUI Zhanqi. Survey of Fuzz Testing Embedded Device Firmwares[J]. Computer Engineering and Applications, 2025, 61(23): 72-89.
| [1] 于婷婷, 李超, 王博祥, 等. 中断驱动型航天嵌入式软件原子性违反检测方法[J]. 计算机研究与发展, 2023, 60(2): 294-310. YU T T, LI C, WANG B X, et al. Atomicity violation detection for interrupt-driven aerospace embedded software[J]. Journal of Computer Research and Development, 2023, 60(2): 294-310. [2] 张晓策. 基于动态故障树的嵌入式系统故障模型研究[D]. 南京: 南京航空航天大学, 2018: 1-63. ZHANG X C. The research of fault model of embedded system based on the dynamic fault tree[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 1-63. [3] 苏曙光. 嵌入式系统协同设计[M]. 武汉: 华中科技大学出版社, 2022. SU S G. Collaborative design of embedded system[M]. Wuhan: Huazhong University of Science and Technology Press, 2022. [4] ZETTER K. Countdown to zero day: stuxnet and the launch of the world’s first digital weapon[M]. New York: Crown Publishers, 2014. [5] KOLIAS C, KAMBOURAKIS G, STAVROU A, et al. DDoS in the IoT: mirai and other botnets[J]. Computer, 2017, 50(7): 80-84. [6] MILLER B P, FREDRIKSEN L, SO B. An empirical study of the reliability of UNIX utilities[J]. Communications of the ACM, 1990, 33(12): 32-44. [7] 许航, 赵世斌, 朱俊虎, 等. 灰盒模糊测试自适应技术研究[J]. 计算机工程与应用, 2019, 55(14): 87-97. XU H, ZHAO S B, ZHU J H, et al. Greybox fuzzing adaptive technology research[J]. Computer Engineering and Applications, 2019, 55(14): 87-97. [8] ZHU X G, WEN S, CAMTEPE S, et al. Fuzzing: a survey for roadmap[J]. ACM Computing Surveys, 2022, 54(11): 1-36. [9] 崔展齐, 张家铭, 郑丽伟, 等. 覆盖率制导的灰盒模糊测试研究综述[J]. 计算机学报, 2024, 47(7): 1665-1696. CUI Z Q, ZHANG J M, ZHENG L W, et al. A survey of research on coverage-guided greybox fuzzing[J]. Chinese Journal of Computers, 2024, 47(7): 1665-1696. [10] 张洪泽, 洪征, 周胜利, 等. 基于协议状态机遍历的模糊测试优化方法[J]. 计算机工程与应用, 2020, 56(4): 82-91. ZHANG H Z, HONG Z, ZHOU S L, et al. Fuzzing optimization method based on protocol state migration traversal[J]. Computer Engineering and Applications, 2020, 56(4): 82-91. [11] WANG M Z, WU Z Y, XU X Y, et al. Industry practice of coverage-guided enterprise-level DBMS fuzzing[C]//Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice. Piscataway: IEEE, 2021: 328-337. [12]王嘉诚, 蒋佳佳, 赵佳豪, 等. 基于模糊测试的智能合约正确性检测[J]. 计算机工程与应用, 2024, 60(5): 307-320. WANG J C, JIANG J J, ZHAO J H, et al. Correctness detection of smart contract based on fuzzing[J]. Computer Engineering and Applications, 2024, 60(5): 307-320. [13] ZHENG Y W, DAVANIAN A, YIN H, et al. FIRM-AFL: high-throughput greybox fuzzing of IoT firmware via augmented process emulation[C]//Proceedings of the 28th USENIX Conference on Security Symposium, 2021:1099-1144. [14] 张浩, 申珊靛, 刘鹏, 等. 嵌入式设备固件仿真器综述[J]. 计算机研究与发展, 2023, 60(10): 2255-2270. ZHANG H, SHEN S D, LIU P, et al. Review of firmware emulators in embedded devices[J]. Journal of Computer Research and Development, 2023, 60(10): 2255-2270. [15] SRIVASTAVA P, PENG H, LI J H, et al. FirmFuzz: automated IoT firmware introspection and analysis[C]//Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things. New York: ACM, 2019: 15-21. [16] YUN J, RUSTAMOV F, KIM J, et al. Fuzzing of embedded systems: a survey[J]. ACM Computing Surveys, 2023, 55(7): 1-33. [17] ZHU L P, FU X T, YAO Y, et al. FIoT: detecting the memory corruption in lightweight IoT device firmware[C]//Proceedings of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 2019: 248-255. [18] CHEN D D, EGELE M, WOO M, et al. Towards automated dynamic analysis for linux-based embedded firmware[C]//Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016: 437-448. [19] KIM J, YU J, KIM H, et al. FIRM-COV: high-coverage greybox fuzzing for IoT firmware via optimized process emulation[J]. IEEE Access, 2021, 9: 101627-101642. [20] ReFirm Labs. Firmware analysis tool[EB/OL]. (2024-01-13)[2024-07-15]. https://github.com/ReFirmLabs/binwalk. [21] MERA A, LIU C M, SUN R M, et al. SHiFT: semi-hosted fuzz testing for embedded applications[C]//Proceedings of the 33rd USENIX Conference on Security Symposium, 2024: 5323-5340. [22] 况博裕, 张兆博, 杨善权, 等. HMFuzzer: 一种基于人机协同的物联网设备固件漏洞挖掘方案[J]. 计算机学报, 2024, 47(3): 703-716. KUANG B Y, ZHANG Z B, YANG S Q, et al. HMFuzzer: a human-machine collaboration-based firmware vulnerability mining scheme for IoT devices[J]. Chinese Journal of Computers, 2024, 47(3): 703-716. [23] SHOSHITAISHVILI Y, WANG R Y, HAUSER C, et al. Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware[C]//Proceedings of the Network and Distributed System Security Symposium, 2015. [24] FENG Z W, MA J Y. TWFuzz: fuzzing embedded systems with three wires[C]//Proceedings of the 25th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems. New York: ACM, 2024: 107-118. [25] 朱怀东, 蒋烈辉, 董卫宇. 基于内存模糊测试的嵌入式固件漏洞检测[J]. 计算机工程与设计, 2018, 39(9): 2992-2996. ZHU H D, JIANG L H, DONG W Y. Embedded firmware vulnerability detection based on in-memory fuzzy test[J]. Computer Engineering and Design, 2018, 39(9): 2992-2996. [26] 潘祖烈, 王泰彦, 周航, 等. 一种基于导向式模糊测试的IoT设备固件漏洞分析方法[J]. 信息对抗技术, 2023, 2(1): 38-54. PAN Z L, WANG T Y, ZHOU H, et al. Vulnerability analysis method for internet of things device firmware based on guided fuzzing[J]. Information Countermeasure Technology, 2023, 2(1): 38-54. [27] HERNANDEZ G, FOWZE F, TIAN D J, et al. FirmUSB: vetting USB device firmware using domain informed symbolic execution[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 2245-2262. [28] LI X X, ZHAO L, WEI Q, et al. SHFuzz: service handler-aware fuzzing for detecting multi-type vulnerabilities in embedded devices[J]. Computers & Security, 2024, 138: 103618. [29] 林欣康, 顾匡愚, 赵磊. UEFI的启发式逆向分析与模糊测试方法[J]. 软件学报, 2024, 35(8): 3577-3590. LIN X K, GU K Y, ZHAO L. UEFI fuzz testing system and method based on heuristic reverse analysis[J]. Journal of Software, 2024, 35(8): 3577-3590. [30] IDA Pro[EB/OL]. (2023-10-01)[2024-07-15]. https://hex-rays.com/. [31] ZADDACH J, BRUNO L, FRANCILLON A, et al. Avatar: a framework to support dynamic security analysis of embedded systems’ firmwares[C]//Proceedings of the Network and Distributed System Security Symposium, 2014:1-16. [32] KIM M, KIM D, KIM E, et al. FirmAE: towards large-scale emulation of IoT firmware for dynamic analysis[C]//Proceedings of the Annual Computer Security Applications Conference. New York: ACM, 2020: 733-745. [33] OLIINYK Y, SCOTT M, TSANG R, et al. Fuzzing BusyBox: leveraging LLM and crash reuse for embedded bug unearthing[J]. arXiv:2403.03897, 2024. [34] CHEN L B, WANG Y H, CAI Q P, et al. Sharing more and checking less: leveraging common input keywords to detect bugs in embedded systems[C]//Proceedings of the USENIX Conference on Security Symposium, 2021. [35] JOHNSON E, BLAND M, ZHU Y F, et al. Jetset: targeted firmware rehosting for embedded systems[C]//Proceedings of the USENIX Conference on Security Symposium, 2021:321-338. [36] DU X C, CHEN A D, HE B Y, et al. AFLIot: fuzzing on linux-based IoT device with binary-level instrumentation[J]. Computers & Security, 2022, 122: 102889. [37] CHEN J Y, DIAO W R, ZHAO Q C, et al. IoTFuzzer: discovering memory corruptions in IoT through app-based fuzzing[C]//Proceedings of the Network and Distributed System Security Symposium, 2018: 158965. [38] SHAR L K, BINH DUONG T N, JIANG L X, et al. SmartFuzz: an automated smart fuzzing approach for testing SmartThings apps[C]//Proceedings of the 27th Asia-Pacific Software Engineering Conference. Piscataway: IEEE, 2020: 365-374. [39] REDINI N, CONTINELLA A, DAS D, et al. Diane: identifying fuzzing triggers in apps to generate under-constrained inputs for IoT devices[C]//Proceedings of the 2021 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2021: 484-500. [40] SCHARNOWSKI T, BARS N, SCHLOEGEL M, et al. Fuzzware: using precise MMIO modeling for effective firmware fuzzing[C]//Proceedings of the 31st USENIX Conference on Security Symposium, 2022: 1239-1256. [41] YIN J W, LI M H, LI Y K, et al. RSFuzzer: discovering deep SMI handler vulnerabilities in UEFI firmware with hybrid fuzzing[C]//Proceedings of the IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2023: 2155-2169. [42] ZHAO H, LI Z H, WEI H S, et al. SeqFuzzer: an industrial protocol fuzzing framework from a deep learning perspective[C]//Proceedings of the 12th IEEE Conference on Software Testing, Validation and Verification. Piscataway: IEEE, 2019: 59-67. [43] FENG B, MERA A, LU L. P2IM: scalable and hardware-independent firmware testing via automatic peripheral interface modeling (extended version)[C]//Proceedings of the USENIX Conference on Security Symposium, 2020. [44] MA X Y, LUO L N, ZENG Q. From one thousand pages of specification to unveiling hidden bugs: large language model assisted fuzzing of matter IoT devices[C]//Proceedings of the 33rd USENIX Conference on Security Symposium, 2024:4783-4800. [45] LIU Q, ZHANG C, MA L, et al. FirmGuide: boosting the capability of rehosting embedded linux kernels through model-guided kernel execution[C]//Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2021: 792-804. [46] SHU Z, YAN G H. IoTInfer: automated blackbox fuzz testing of IoT network protocols guided by finite state machine inference[J]. IEEE Internet of Things Journal, 2022, 9(22): 22737-22751. [47] CHESSER M, NEPAL S, RANASINGHE D C. Icicle: a re-designed emulator for grey?box firmware fuzzing[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2023: 76-88. [48] ANGELAKOPOULOS I, STRINGHINI G, EGELE M. FirmSolo: enabling dynamic analysis of binary Linux-based IoT kernel modules[C]//Proceedings of the 32nd USENIX Conference on Security Symposium, 2023: 5021-5038. [49] ZHANG Y, HUO W, JIAN K P, et al. ESRFuzzer: an enhanced fuzzing framework for physical SOHO router devices to discover multi-type vulnerabilities[J]. Cybersecurity, 2021, 4: 24. [50] CELIK Z B, TAN G, MCDANIEL P. IoTGuard: dynamic enforcement of security and safety policy in commodity IoT[C]//Proceedings Network and Distributed System Security Symposium, 2019: 1-15. [51] HERDT V, GRO?E D, WLOKA J, et al. Verification of embedded binaries using coverage-guided fuzzing with SystemC-based virtual prototypes[C]//Proceedings of the on Great Lakes Symposium on VLSI. New York: ACM, 2020: 101-106. [52] GUI Z J, SHU H, KANG F, et al. FIRMCORN: vulnerability-oriented fuzzing of IoT firmware via optimized virtual execution[J]. IEEE Access, 2020, 8: 29826-29841. [53] TYCHALAS D, MANIATAKOS M. IFFSET: in-field fuzzing of industrial control systems using system emulation[C]//Proceedings of the Design, Automation & Test in Europe Conference & Exhibition. Piscataway: IEEE, 2020: 662-665. [54] MERA A, FENG B, LU L, et al. DICE: automatic emulation of DMA input channels for dynamic firmware analysis[C]//Proceedings of the IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2021: 1938-1954. [55]ZHOU W, GUAN L, LIU P, et al. Automatic firmware emulation through invalidity-guided knowledge inference[C]//Proceedings of the 30th USENIX Conference on Security Symposium, 2021: 2007-2024. [56] HERNANDEZ G, MUENCH M, MAIER D, et al. FirmWire: transparent dynamic analysis for cellular baseband firmware[C]//Proceedings 2022 Network and Distributed System Security Symposium, 2022: 1-19. [57] 司健鹏, 洪征, 周振吉, 等. 关键字敏感的嵌入式设备固件模糊测试方法[J]. 计算机科学, 2024, 51(10): 196-207. SI J P, HONG Z, ZHOU Z J, et al. Keyword sensitive fuzzing method for embedded device firmware[J]. Computer Science, 2024, 51(10): 196-207. [58] WEI Y, WANG Y J, ZHOU L, et al. IEmu: interrupt modeling from the logic hidden in the firmware[J]. Journal of Systems Architecture, 2024, 154: 103237. [59] LIU H T, GAN S T, ZHANG C, et al. Labrador: response guided directed fuzzing for black-box IoT devices[C]//Proceedings of the IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2024: 1920-1938. [60] WANG J C, YU L, LUO X P. LLMIF: augmented large language model for fuzzing IoT devices[C]//Proceedings of the IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2024: 881-896. [61] EISELE M. Debugger-driven embedded fuzzing[C]//Proceedings of the IEEE Conference on Software Testing, Verification and Validation. Piscataway: IEEE, 2022: 483-485. [62] EISELE M, EBERT D, HUTH C, et al. Fuzzing embedded systems using debug interfaces[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2023: 1031-1042. [63] LI W Q, SHI J M, LI F J, et al. μAFL: non-intrusive feedback-driven fuzzing for microcontroller firmware[C]//Proceedings of the 44th International Conference on Software Engineering. New York: ACM, 2022: 1-12. [64] LUO L N, ZENG Q, YANG B K, et al. Westworld: fuzzing-assisted remote dynamic symbolic execution of smart apps on IoT cloud platforms[C]//Proceedings of the Annual Computer Security Applications Conference. New York: ACM, 2021: 982-995. [65] MA X Y, ZENG Q, CHI H T, et al. No more companion apps hacking but one dongle: hub-based blackbox fuzzing of IoT firmware[C]//Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services. New York:ACM, 2023: 205-218. [66] BELLARD F. QEMU, a fast and portable dynamic translator[C]//Proceedings of the Conference on USENIX Annual Technical Conference, 2005: 41-46. [67] QUYNH N, VU D. Unicorn: next generation CPU emulator framework[EB/OL]. (2022-11-13)[2024-07-15]. https://www. unicorn-engine.org. [68] Qilingframework. Qiling: a true instrumentable binary emulation framework[EB/OL]. (2019?08?23)[2024?07?15]. https://github.com/qilingframework/qiling. [69] NCC Group. TriforceAFL: AFL/QEMU fuzzing with full-system emulation[EB/OL]. (2016?06?14)[2024?07?15]. https://github.com/nccgroup/TriforceAFL. [70] FENG K, COOK M M, MARNERIDES A K. Sizzler: sequential fuzzing in ladder diagrams for vulnerability detection and discovery in programmable logic controllers[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 1660-1671. [71] FENG B, LUO M, LIU C M, et al. AIM: automatic interrupt modeling for dynamic firmware analysis[J]. IEEE Transactions on Dependable and Secure Computing, 2024, 21(4): 3866-3882. [72] ZHENG Y W, LI Y K, ZHANG C, et al. Efficient greybox fuzzing of applications in Linux?based IoT devices via enhanced user-mode emulation[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2022: 417-428. [73] SEIDEL L, MAIER D, MUENCH M. Forming faster firmware fuzzers[C]//Proceedings of the 32nd USENIX Conference on Security Symposium, 2023: 2903-2920. [74] CORTEGGIANI N, FRANCILLON A. HardSnap: leveraging hardware snapshotting for embedded systems security testing[C]//Proceedings of the 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. Piscataway: IEEE, 2020: 294-305. [75] LIU P Y, JI S L, ZHANG X H, et al. IFIZZ: deep-state and efficient fault-scenario generation to test IoT firmware[C]//Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2021: 805-816. [76] ZHANG C, LI Y K, CHEN H X, et al. BIFF: practical binary fuzzing framework for programs of IoT and mobile devices[C]//Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2021: 1161-1165. [77] WANG Q Y, CHANG B Y, JI S L, et al. SyzTrust: state-aware fuzzing on trusted OS designed for IoT devices[C]//Proceedings of the IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2024: 2310-2387. [78] FENG X T, SUN R X, ZHU X G, et al. Snipuzz: black-box fuzzing of IoT firmware via message snippet inference[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2021: 337-350. [79] SACHIDANANDA V, BHAIRAV S, GHOSH N, et al. PIT: a probe into Internet of Things by comprehensive security analysis[C]//Proceedings of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 2019: 522-529. [80] COSTIN A, ZARRAS A, FRANCILLON A. Automated dynamic firmware analysis at scale: a case study on embedded web interfaces[C]//Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. New York:ACM, 2016: 437-448. [81] YU B, WANG P F, YUE T, et al. Poster: fuzzing IoT firmware via multi-stage message generation[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 2525-2527. [82] GAO J, XU Y W, JIANG Y, et al. EM-Fuzz: augmented firmware fuzzing via memory checking[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(11): 3420-3432. [83] SITU L Y, ZHANG C, GUAN L, et al. Physical devices-agnostic hybrid fuzzing of IoT firmware[J]. IEEE Internet of Things Journal, 2023, 10(23): 20718-20734. [84] CHENG Y, ZOU H J, HE J Y, et al. MMFuzz: towards enhancing RTL fuzz testing using metric feedbacks based on Markov chain[C]//Proceedings of the IEEE 32nd Asian Test Symposium. Piscataway:IEEE, 2023: 1-6. [85] 卢昊良, 邹燕燕, 彭跃, 等. 基于物联网设备局部仿真的反馈式模糊测试技术[J]. 信息安全学报, 2023, 8(1): 78-92. LU H L, ZOU Y Y, PENG Y, et al. Feedback-driven fuzzing technology based on partial simulation of IoT devices[J]. Journal of Cyber Security, 2023, 8(1): 78-92. [86] YANG Z K, VIKTOROV Y, YANG J, et al. UEFI firmware fuzzing with simics virtual platform[C]//Proceedings of the 57th ACM/IEEE Design Automation Conference. Piscataway: IEEE, 2020: 1-6. [87] SALEHI M, DEGANI L, ROVERI M, et al. Discovery and identification of memory corruption vulnerabilities on bare-metal embedded devices[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(2): 1124-1138. [88] CHESSER M, NEPAL S, RANASINGHE D. MultiFuzz: a multi-stream fuzzer for testing monolithic firmware[C]//Proceedings of the USENIX Conference on Security Symposium, 2024:1-18. [89] YU Z H, WANG H L, WANG D, et al. CGFuzzer: a fuzzing approach based on coverage-guided generative adversarial networks for industrial IoT protocols[J]. IEEE Internet of Things Journal, 2022, 9(21): 21607-21619. [90] YU L, LI L Y, WANG H Y, et al. Towards automated detection of higher-order memory corruption vulnerabilities in embedded devices[C]//Proceedings of the Design, Automation & Test in Europe Conference & Exhibition. Piscataway: IEEE, 2021: 1707-1710. [91] B?HME M, PHAM V T, NGUYEN M D, et al. Directed greybox fuzzing[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 2329-2344. [92] ECEIZA M, FLORES J L, ITURBE M. Fuzzing the Internet of Things: a review on the techniques and challenges for efficient vulnerability discovery in embedded systems[J]. IEEE Internet of Things Journal, 2021, 8(13): 10390-10411. |
| [1] | 符海阔, 乔塬心, 陈菁菁, 崔展齐, 王志伟. QAAttack:基于文本特征分析的问答系统模糊测试方法[J]. 计算机工程与应用, 2025, 61(20): 194-205. |
| [2] | 王嘉诚, 蒋佳佳, 赵佳豪, 张玉书, 王良民. 基于模糊测试的智能合约正确性检测[J]. 计算机工程与应用, 2024, 60(5): 307-320. |
| [3] | 于振华, 杨文建, 李西滕, 丛旭亚. 基于强化学习的无人机系统模糊测试方法研究[J]. 计算机工程与应用, 2024, 60(21): 89-98. |
| [4] | 许爱东, 徐培明, 尚进, 孙钦东. 基于强化学习多算法组合模型的智能化模糊测试技术[J]. 计算机工程与应用, 2024, 60(20): 284-292. |
| [5] | 李兆基, 王田原, 周自强, 王尧, 陈永乐. 基于LSTM和动态策略的定向灰盒模糊测试技术[J]. 计算机工程与应用, 2022, 58(18): 147-153. |
| [6] | 张洪泽,洪征,周胜利,冯文博. 基于协议状态机遍历的模糊测试优化方法[J]. 计算机工程与应用, 2020, 56(4): 82-91. |
| [7] | 张婉莹,曹晓梅. 基于污点分析的白盒模糊测试方案[J]. 计算机工程与应用, 2019, 55(18): 236-240. |
| [8] | 许 航,赵世斌,朱俊虎,彭建山,林宏阳. 灰盒模糊测试自适应技术研究[J]. 计算机工程与应用, 2019, 55(14): 87-97. |
| [9] | 林宏阳,彭建山,赵世斌,朱俊虎,许 航. JavaScript引擎漏洞检测方法综述[J]. 计算机工程与应用, 2019, 55(11): 16-24. |
| [10] | 刘津霖,付光远,李海龙,汪洪桥. 基于改进投票专家算法的专有协议模糊测试方法[J]. 计算机工程与应用, 2018, 54(12): 93-99. |
| [11] | 康红凯,吴礼发,洪 征,庄洪林,张亚丰. 一种基于FSM的BGP-4协议模糊测试方法[J]. 计算机工程与应用, 2017, 53(6): 111-117. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||