[1] 顾兆军, 杨文瑾, 周景贤. 基于迁移学习的小样本DGA恶意域名检测方法[J]. 计算机工程与应用, 2021, 57(14): 103-109.
GU Z J, YANG W J, ZHOU J X. Small sample DGA malicious domain names detection method based on transfer lear-ning[J]. Computer Engineering and Applications, 2021, 57(14): 103-109.
[2] DIVYA T, AMRITHA P P, VISWANATHAN S. A model to detect domain names generated by DGA malware[J]. Procedia Computer Science, 2022, 215: 403-412.
[3] YOSHIDA K, FUJIWARA K, SATO A, et al. Cardinality anal-ysis to classify malicious domain names[C]//Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference. Piscataway: IEEE, 2020: 826-832.
[4] CUCCHIARELLI A, MORBIDONI C, SPALAZZI L, et al. Algo-rithmically generated malicious domain names detection based on n-grams features[J]. Expert Systems with Applications, 2021, 170: 114551.
[5] HOANG X D, VU X H. An improved model for detecting DGA botnets using random forest algorithm[J]. Information Security Journal: A Global Perspective, 2022, 31(4): 441-450.
[6] 马栋林, 张澍寰, 赵宏. 改进Relief-C5.0的恶意域名检测算法[J]. 计算机工程与应用, 2022, 58(11): 100-106.
MA D L, ZHANG S H, ZHAO H. Improved malicious domain name detection algorithm of Relief-C5.0[J]. Computer Engineering and Applications, 2022, 58(11): 100-106.
[7] MORAN B, GIL D. Domain generation algorithm detection using machine learning methods[M]//Cyber security: power and technology. Cham: Springer, 2018: 133-161.
[8] GHALATI N F, GHALATY N F, BARATA J. Towards the detection of malicious URL and domain names using machine learning[C]//Technological Innovation for Life Improvement: Proceedings of the 11th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems. Cham: Springer, 2020: 109-117.
[9] VAN CAN N, TU D N, TUAN T A, et al. A new method to classify malicious domain name using neutrosophic sets in DGA botnet detection[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(4): 4223-4236.
[10] MU Z C. Predicting domain generation algorithms with N-gram models[C]//Proceedings of the 2022 International Conference on Big Data, Information and Computer Network. Piscataway: IEEE, 2022: 31-38.
[11] 赵宏, 常兆斌, 王伟杰. 基于深度自编码和决策树的恶意域名检测[J]. 微电子学与计算机, 2020, 37(5): 13-17.
ZHAO H, CHANG Z B, WANG W J. Malicious domain name detection based on deep auto-encoder and decision tree[J]. Microelectronics & Computer, 2020, 37(5): 13-17.
[12] SOLEYMANI A, ARABGOL F. A novel approach for det-ecting DGA-based botnets in DNS queries using machine learning techniques[J]. Journal of Computer Networks and Communications, 2021(1): 4767388.
[13] HUANG J Y, ZHANG G D, SHEN Y J. DGA domain name detection based on SVM under grey wolf optimization algorithm[C]//Proceedings of the 2019 IEEE 10th International Conference on Software Engineering and Service Science. Piscataway: IEEE, 2020: 245-248.
[14] WOODBRIDGE J, ANDERSON H S, AHUJA A, et al. Predicting domain generation algorithms with long short-term memory networks[J]. arXiv:1611.00791, 2016.
[15] 张斌, 廖仁杰. 基于CNN与LSTM相结合的恶意域名检测模型[J]. 电子与信息学报, 2021, 43(10): 2944-2951.
ZHANG B, LIAO R J. Malicious domain name detection model based on CNN and LSTM[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2944-2951.
[16] TUAN T A, LONG H V, TANIAR D. On detecting and classifying DGA botnets and their families[J]. Computers & Sec-urity, 2022, 113: 2549-2566.
[17] YANG C, LU T L, YAN S Y, et al. N-Trans: parallel detection algorithm for DGA domain names[J]. Future Internet, 2022, 14(7): 209-224.
[18] 余子丞, 凌捷. 基于Transformer和多特征融合的DGA域名检测方法[J]. 计算机工程与科学, 2023, 45(8): 1416-1423.
YU Z C, LING J. A DGA domain name detection method based on Transformer and multi-feature fusion[J]. Computer Engineering & Science, 2023, 45(8): 1416-1423.
[19] DING L, DU P, HOU H W, et al. Botnet DGA domain name classification using transformer network with hybrid embedding[J]. Big Data Research, 2023, 33: 395-405.
[20] 魏金侠, 龙春, 付豪, 等. 基于增强嵌入特征超图学习的恶意域名检测方法[J]. 计算机研究与发展, 2024, 61(9): 2334-2346.
WEI J X, LONG C, FU H, et al. Malicious domain name det-ection method based on enhanced embedded feature hypergraph learning[J]. Journal of Computer Research and Development, 2024, 61(9): 2334-2346.
[21] XU C Y, SHEN J Z, DU X. Detection method of domain names generated by DGAs based on semantic representation and deep neural network[J]. Computers & Security, 2019, 85: 77-88.
[22] ZHAO K J, GUO W, QIN F L, et al. D3-SACNN: DGA domain detection with self-attention convolutional network[J]. IEEE Access, 2022, 10: 69250-69263.
[23] SUN Y T, DONG L, HUANG S H, et al. Retentive network: a successor to transformer for large language models[J]. arXiv:2307.08621, 2023.
[24] MAJESTIC. Majestic Million[EB/OL]. [2024-06-27]. https://majestic.com/reports/majestic-million.
[25] Qihoo 360 Technology Co.360 DGA feeds[EB/OL]. [2024-06-27]. https://data.netlab.360.com/dga/. |