计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 157-169.DOI: 10.3778/j.issn.1002-8331.2503-0344

• 理论与研发 • 上一篇    下一篇

异构差分进化混合动态分级粒子群的任务分配方法研究

杨玉,李颖,李建军,耿超龙   

  1. 1.哈尔滨商业大学 计算机与信息工程学院,哈尔滨 150028
    2.公共政策与现代服务业创新智库,哈尔滨 150028
  • 出版日期:2025-10-15 发布日期:2025-10-15

Research on Task Assignment Method Based on Heterogeneous Differential Evolution Mixed with Dynamically Ranked Particle Swarm Optimization

YANG Yu, LI Ying, LI Jianjun, GENG Chaolong   

  1. 1.School of Computer Science and Information Engineering, Harbin University of Commerce, Harbin 150028, China
    2.Think Tank for Public Policy and Modern Service Industry Innovation, Harbin 150028, China
  • Online:2025-10-15 Published:2025-10-15

摘要: 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。

关键词: 异构差分进化, 混合动态分级, 粒子群优化算法, 任务分配方法

Abstract: Logistics transportation task assignment plays a crucial role in modern supply chains, making efficient and optimized task assignment methods essential for improving delivery efficiency. Traditional PSO algorithms face challenges when solving large-scale vehicle task assignment problems, including difficulty adapting to dynamic environments, a tendency to get trapped in local optima, and difficulty balancing exploration and exploitation capabilities. To address these issues, a heterogeneous differential hybrid dynamic hierarchical particle swarm optimization-based task assignment method is proposed. This method enhances search efficiency through a dual evolution mechanism of heterogeneous. Two differential evolution mutation operators are adopted to balance the population’s exploration and exploitation at different stages. A hierarchical particle swarm framework is introduced, dynamically dividing the population into tiers based on particle fitness and achieving efficient information transfer through a competition-collaboration mechanism, thereby enhancing global search capability and enabling efficient search in complex path spaces. A dynamic parameter adjustment mechanism is incorporated to further improve the global search capability for task assignments. The proposed algorithm is compared with several other algorithms through experiments on 30 test instances of varying sizes and the real-world logistics transportation dataset “Amazon Delivery Dataset”. The results demonstrate that the heterogeneous differential hybrid dynamic hierarchical particle swarm optimization algorithm can achieve more efficient logistics transportation task allocation and exhibits superior performance in path optimization, convergence speed, and solution stability.

Key words: heterogeneous differential evolution, hybrid dynamic ranking, particle swarm optimization algorithm, task allocation method