计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 355-364.DOI: 10.3778/j.issn.1002-8331.2405-0233

• 工程与应用 • 上一篇    

基于HSBSO算法的城市物流无人机指派

张书琴,夏洪山,江炜,杨文凯,王莫凡   

  1. 1.常州工学院 航空与飞行学院,江苏 常州 213032
    2.南京航空航天大学 民航学院,南京 211106
  • 出版日期:2025-09-01 发布日期:2025-09-01

Urban Logistics Drones Task Allocation Based on Hybrid Strategy-Improved Brain Storm Optimization Algorithm

ZHANG Shuqin, XIA Hongshan, JIANG Wei, YANG Wenkai, WANG Mofan   

  1. 1.School of Aviation and Flight, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China
    2.Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Online:2025-09-01 Published:2025-09-01

摘要: 针对头脑风暴优化算法求解带有时间窗同时寄取快递的城市物流无人机任务指派效果差、收敛速度慢等问题,提出了一种混合策略改进的头脑风暴优化算法(hybrid strategy-improved brain storm optimization,HSBSO)。通过Sobol序列初始化种群,增加种群多样性;引入改进的Sine混沌映射修正中间粒子,再用量子行为产生新粒子,提高算法全局搜索能力的同时加快收敛速度;二次函数动态调整局部搜索概率,控制全局搜索及局部搜索的精度;运用基于观测的变异学习策略跳出局部最优。实验结果表明,HSBSO算法与基本BSO算法、GA及SA相比,平均适应度值分别降低1.5%、21.4%及5.7%,程序运行时间分别下降4.5%、98.2%及70.2%,HSBSO算法运行时间增长率为每客户2.2 s,且HSBSO获得的90%解的适应度值优于BSO适应度值的平均值。同时,基于观测的变异学习策略在跳出局部最优的能力及稳定性方面也显著优于莱维飞行、动态透镜成像及透镜成像反向学习策略。

关键词: 城市物流无人机, 量子行为, Sine混沌映射, 基于观测的变异学习策略, 头脑风暴优化算法

Abstract: A hybrid strategy improved brainstorm optimization (BSO) algorithm, termed HSBSO, is proposed to address issues such as poor assignment efficiency and slow convergence in solving unmanned aerial vehicle (UAV) task assignments for city logistics involving simultaneous delivery and pickup with time windows. The HSBSO algorithm initializes the population using Sobol sequences to enhance population diversity. The algorithm introduces an improved Sine chaotic mapping to correct intermediate particles, then generates new particles using quantum behavior to enhance its global search capability while accelerating convergence speed. A quadratic function dynamically adjusts the probability of local search to control the precision of both global and local searches. Finally, an observation-based mutation learning strategy is used to escape local optima. Experimental results demonstrate that compared to BSO, genetic algorithms (GA), and simulated annealing (SA), HSBSO reduces average fitness values by 1.5%, 21.4%, and 5.7%, respectively. It also decreases program execution times by 4.5%, 98.2%, and 70.2%, respectively, and the growth rate of HSBSO’s running time is 2.2 seconds per customer. Moreover, HSBSO achieves fitness values for 90% of solutions that are superior to the average fitness values obtained by BSO. Furthermore, observation-based mutation learning strategy significantly outperforms strategies like Levy flight, dynamic lens imaging, and reverse lens imaging in terms of its ability to escape local optima and its stability.

Key words: urban logistics drones, quantum behavior, Sine chaotic mapping, observation-based mutation learning strategy, hybrid strategy-improved brain storm optimization algorithm (HSBSO)