[1] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[2] 程显毅, 谢璐, 朱建新, 等. 生成对抗网络GAN综述[J]. 计算机科学, 2019, 46(3): 74-81.
CHENG X Y, XIE L, ZHU J X, et al. Review of generative adversarial network[J]. Computer Science, 2019, 46(3): 74-81.
[3] ZHANG R, ISOLA P, EFROS A A. Colorful image colorization[C]//Proceedings of the European Conference on Computer Vision, 2016: 649-666.
[4] CHENG Z, YANG Q, SHENG B. Deep colorization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 415-423.
[5] ZHU P, ABDAL R, QIN Y, et al. SEAN: image synthesis with semantic region-adaptive normalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5104-5113.
[6] LI X, ZHANG W, PANG J, et al. Video k-net: a simple, strong, and unified baseline for video segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 18847-18857.
[7] ZENG Y, YANG H, CHAO H, et al. Improving visual quality of image synthesis by a token-based generator with transformers[C]//Advances in Neural Information Processing Systems, 2021: 21125-21137.
[8] LI W, XIONG W, LIAO H, et al. CariGAN: caricature generation through weakly paired adversarial learning[J]. Neural Networks, 2020, 132: 66-74.
[9] DALVA Y, ALTINDI? S F, DUNDAR A. VecGAN: image-to-image translation with interpretable latent directions[C]//European Conference on Computer Vision. Cham: Springer, 2022: 153-169.
[10] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4401-4410.
[11] ZHANG Y, LI M, LI R, et al. Exact feature distribution matching for arbitrary style transfer and domain generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8035-8045.
[12] LI Z, WANG C, ZHENG H, et al. FakeCLR: exploring contrastive learning for solving latent discontinuity in data-efficient GANs[C]//European Conference on Computer Vision. Cham: Springer, 2022: 598-615.
[13] LEDIG C, THEIS L, HUSZR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 105-114.
[14] DONG C, CHEN C L, HE K, et al. Image superresolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[15] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014.
[16] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5967-5976.
[17] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232.
[18] AMODIO M, KRISHNASWAMY S. Travelgan: image-to-image translation by transformation vector learning[C]//Proceedings of the IEEE/CVF Conference on Computer vision and Pattern Recognition, 2019: 8983-8992.
[19] BENAIM S, WOLF L. One-sided unsupervised domain mapping[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 752-762.
[20] FU H, GONG M, WANG C, et al. Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2427-2436.
[21] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2414-2423.
[22] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization[J]. arXiv:1607.08022, 2016.
[23] DUMOULIN V, SHLENS J, KUDLUR M. A learned represent-ation for artistic style[J]. arXiv:1610.07629, 2016.
[24] HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 1501-1510.
[25] LASSNER C, PONS-MOLL G, GEHLER P V. A generative model of people in clothing[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 853-862.
[26] JETCHEV N, BERGMANN U. The conditional analogy GAN: swapping fashion articles on people images[C]//IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 2017: 2287-2292.
[27] HAN X T, WU Z X, WU Z, et al. Viton: an image-based virtual try-on network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7543-7552.
[28] SBAI O, ELHOSEINY M, BORDES A, et al. Design: design inspiration from generative networks[C]//Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
[29] MO S, CHO M, SHIN J. Instagan: instance-aware image-to-image translation[J]. arXiv:1812.10889, 2018.
[30] XIAN W, SANGKLOY P, AGRAWAL V, et al. Texturegan: controlling deep image synthesis with texture patches[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8456-8465.
[31] AK K E, LIM J H, THAM J Y, et al. Attribute manipulation generative adversarial networks for fashion images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 10541-10550.
[32] ZHU S, URTASUN R, FIDLER S, et al. Be your own prada: fashion synthesis with structural coherence[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 1680-1688.
[33] ZHANG Y, LI L, SONG L, et al. FACT: fused attention for clothing transfer with generative adversarial networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12894-12901.
[34] YOO D, KIM N, PARK S, et al. Pixel-level domain transfer[C]//Proceedings of the European Conference on Computer Vision, 2016: 517-532.
[35] GOKASLAN A, RAMANUJAN V, RITCHIE D, et al. Improving shape deformation in unsupervised image-to-image translation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 649-665.
[36] XU Y, YIN Y, JIANG L, et al. TransEditor: transformer-based dual-space GAN for highly controllable facial editing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7683-7692.
[37] WANG T, ZHANG Y, FAN Y, et al. High-fidelity gan inversion for image attribute editing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11379-11388.
[38] KIM J, CHOI Y, UH Y. Feature statistics mixing regularization for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11294-11303.
[39] YANG S, HWANG H, YE J C. Zero-shot contrastive loss for text-guided diffusion image style transfer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 22873-22882.
[40] LI B, ZHU Y, WANG Y, et al. AniGAN: style-guided generative adversarial networks for unsupervised anime face generation[J]. IEEE Transactions on Multimedia, 2021, 24: 4077-4091.
[41] CHEN Y, LAI Y K, LIU Y J. CartoonGAN: generative adversarial networks for photo cartoonization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 9465-9474.
[42] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[43] ZHAO Y, ZHANG X, FENG W, et al. Deep learning classification by ResNet-18 based on the real spectral dataset from multispectral remote sensing images[J]. Remote Sensing, 2022, 14(19): 4883.
[44] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, October 11-14, 2016: 694-711.
[45] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv:1807.03748, 2018.
[46] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//International Conference on Machine Learning, 2020: 1597-1607.
[47] SONG X, FENG F, LIU J, et al. Neurostylist: neural compatibility modeling for clothing matching[C]//Proceedings of the 25th ACM International Conference on Multimedia, 2017: 753-761.
[48] NICHOL K. Painter by numbers, WIKI ART[Z]. Kiri Nichol, 2016.
[49] XU Q, HUANG G, YUAN Y, et al. An empirical study on evaluation metrics of generative adversarial networks[J]. arXiv:1806.07755, 2018.
[50] SETIADI D R I M. PSNR vs SSIM: imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications, 2021, 80(6): 8423-8444.
[51] PARK T, EFROS A A, ZHANG R, et al. Contrastive learning for unpaired image-to-image translation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, August 23-28, 2020. [S.l.]: Springer International Publishing, 2020: 319-345.
[52] JING Y, LIU X, DING Y, et al. Dynamic instance normalization for arbitrary style transfer[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 4369-4376. |