[1] 黄银花. 基于数据融合的滚动轴承故障诊断研究[J]. 电气传动自动化, 2011, 33(3): 56-59.
HUANG Y H. Research on fault diagnosis of rolling bearings based on data fusion[J]. Electric Drive Automation, 2011, 33(3): 56-59.
[2] DUAN Z H, WU T H, GUO S W, et al. Development and trend of condition monitoring and fault diagnosis of multisensors information fusion for rolling bearings: a review[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 803-819.
[3] 余少勇. 基于深度学习的车辆检测及其细粒度分类关键技术研究[D]. 厦门: 厦门大学, 2017.
YU S Y. Research on key technologies of vehicle detection and its fine-grained classification based on deep learning[D]. Xiamen: Xiamen University, 2017.
[4] 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247.
WANG M H, WU Z X, ZHOU Z G. Fine-grained identification research of crop pests and diseases based on improved CBAM via attention[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 239-247.
[5] 陈前, 刘骊, 付晓东, 等. 部件检测和语义网络的细粒度鞋类图像检索[J]. 中国图象图形学报, 2020, 25(8): 1578-1590.
CHEN Q, LIU L, FU X D, et al. Fine-grained shoe image retrieval by part detection and semantic network[J]. Journal of Image and Graphics, 2020, 25(8): 1578-1590.
[6] 陈立潮, 朝昕, 曹建芳, 等. 融合独立组件的ResNet在细粒度车型识别中的应用[J]. 计算机工程与应用, 2021, 57(11): 248-253.
CHEN L C, CHAO X, CAO J F, et al. Application of ResNet with independent components in fine-grained vehicle recognition[J]. Computer Engineering and Applications, 2021, 57(11): 248-253.
[7] SHAO H D, CHENG J S, JIANG H K, et al. Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing[J]. Knowledge-Based Systems, 2020, 188: 105022.
[8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
[9] 周陈林, 董绍江, 李玲, 等. 滚动轴承多状态特征信息的改进型卷积神经网络故障诊断方法[J]. 振动工程学报, 2020, 33(4): 854-860.
ZHOU C L, DONG S J, LI L, et al. Method to improve convolutional neural network in rolling bearing fault diagnosis with multi-state feature information[J]. Journal of Vibration Engineering, 2020, 33(4): 854-860.
[10] SUN W J , ZHAO R, YAN R Q, et al. Convolutional discriminative feature learning for induction motor fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1350-1359.
[11] OH H, JUNG J H, JEON B C, et al. Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3539-3549.
[12] CHE C C, WANG H W, NI X M, et al. Domain adaptive deep belief network for rolling bearing fault diagnosis[J]. Computers and Industrial Engineering, 2020, 143: 106427.
[13] SHAO H D, JIANG H K, ZHAO K, et al. A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings[J]. Mechanical Systems and Signal Processing, 2018, 110: 193-209.
[14] PAN H, TANG W, XU J J, et al. Rolling bearing fault diagnosis based on stacked autoencoder network with dynamic learning rate[J]. Advances in Materials Science and Engineering, 2020, 2020: 6625273.
[15] ZHAO J, YANG S P, LI Q, et al. A new bearing fault diagnosis method based on signal-to-image mapping and convolutional neural network[J]. Measurement, 2021, 176: 109088.
[16] AYAS S, AYAS M S. A novel bearing fault diagnosis method using deep residual learning network[J]. Multimedia Tools and Applications, 2022, 81(16): 22407-22423.
[17] MA H J, LI S M, AN Z H. A fault diagnosis approach for rolling bearing based on convolutional neural network and nuisance attribute projection under various speed conditions[J]. Applied Sciences, 2019, 9(8): 1603.
[18] LIU S W, JIANG H K, WANG Y F, et al. A deep feature alignment adaptation network for rolling bearing intelligent fault diagnosis[J]. Advanced Engineering Informatics, 2022(52): 101598.
[19] 温江涛, 周熙楠. 模糊粒化非监督学习结合随机森林融合的旋转机械故障诊断[J].机械科学与技术, 2018, 37(11): 1722-1730.
WEN J T, ZHOU X N. Fault diagnosis of rotating machinery in combination with unsupervised learning of fuzzy granulation and random forest fusion[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11): 1722-1730.
[20] GLOWACZ A, GLOWACZ W, GLOWACZ Z, et al. Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals[J]. Measurement, 2018, 113: 1-9.
[21] LIAO L, LEE J. A novel method for machine performance degradation assessment based on fixed cycle features test[J]. Journal of Sound and Vibration, 2009, 326: 894-908.
[22] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39: 1-38.
[23] ZHAO M, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.
[24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[25] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[26] ACUNA S, OPSTAD I S, GODTLIEBSEN F, et al. Soft thresholding schemes for multiple signal classification algorithm[J]. Optics Express, 2020, 28(23): 34434-34449.
[27] LI Z, WANG S H, FAN R R, et al. Teeth category classification via seven-layer deep convolutional neural network with max pooling and global average pooling[J]. International Journal of Imaging Systems and Technology, 2019, 29(4): 577-583.
[28] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456.
[29] SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the case western reserve university data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 100-131. |