[1] ALBAWI S, MOHAMMED T A, AL-ZAWI S. Unders tanding of a convolutional neural network[C]//Proceedings of the 2017 International Conference on Engineering and Technology (ICET). Antalya, Turkey: IEEE, 2017: 1-6.
[2] MIKO?AJCZYK A, GROCHOWSKI M. Data augmentation for improving deep learning in image classification problem[C]//Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW). Poland: IEEE, 2018: 117-122.
[3] ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[J]. arXiv:1710.09412, 2017.
[4] YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 6022-6031.
[5] HUANG S L, WANG X Z, TAO D C. SnapMix: semantically proportional mixing for augmenting fine-grained data[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1628-1636.
[6] ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2014: 834-849.
[7] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of the 2014 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2014: 1449-1457.
[8] ZHANG X P, XIONG H K, ZHOU W G, et al. Picking deep filter responses for fine-grained image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 1134-1142.
[9] GAO Y, HAN X T, WANG X, et al. Channel interaction networks for fine-grained image categorization[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 10818-10825.
[10] WANG Z H, WANG S J, LI H J, et al. Graph-propagation based correlation learning for weakly supervised fine-grained image classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12289-12296.
[11] BEHERA A, WHARTON Z, HEWAGE P, et al. Context-aware attentional pooling (CAP) for fine-grained visual classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 929-937.
[12] ZHAO Y F, YAN K, HUANG F Y, et al. Graph-based high-order relation discovery for fine-grained recognition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 15074-15083.
[13] INOUE H. Data augmentation by pairing samples for images classification[J]. arXiv:1801.02929, 2018.
[14] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the Conference and Workshop on Neural Information Processing Systems (NIPS), 2014: 2672-2680.
[15] SUZUKI T. TeachAugment: data augmentation optimization using teacher knowledge[J]. arXiv:2202.12513, 2022.
[16] CUBUK E D, ZOPH B, MANE D, et al. AutoAugment: learning augmentation policies from data[J]. arXiv:1805. 09501, 2018.
[17] RAME A, SUN R, CORD M. MixMo: mixing multiple inputs for multiple outputs via deep subnetworks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 803-813.
[18] CHEN X L, LI L J, LI F F, et al. Iterative visual reasoning beyond convolutions[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT, USA:IEEE, 2018: 7239-7248.
[19] SINGH K K, DIVVALA S, FARHADI A, et al. DOCK: detecting objects by transferring common-sense knowledge[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 492-508.
[20] QI M S, WANG Y H, QIN J, et al. KE-GAN: knowledge embedded generative adversarial networks for semi-supervised scene parsing[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 5232-5241.
[21] KATO K, LI Y, GUPTA A. Compositional learning for human object interaction[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 247-264.
[22] YU R C, LI A, MORARIU V I, et al. Visual relationship detection with internal and external linguistic knowledge distillation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 1068-1076.
[23] ZAREIAN A, WANG Z, YOU H, et al. Learning visual commonsense for robust scene graph generation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2020: 642-657.
[24] NARASIMHAN M, SCHWING A G. Straight to the facts: learning knowledge base retrieval for factual visual question answering[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 460-477.
[25] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems, 2020: 1877-1901.
[26] FU J, ZHENG H, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4438-4446.
[27] WANG Y M, MORARIU V I, DAVIS L S. Learning a discriminative filter bank within a CNN for fine-grained recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT, USA: IEEE, 2018: 4148-4157.
[28] DING Y, ZHOU Y Z, ZHU Y, et al. Selective sparse sampling for fine-grained image recognition[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 6598-6607.
[29] ZHANG L B, HUANG S L, LIU W, et al. Learning a mixture of granularity-specific experts for fine-grained categorization[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 8330-8339.
[30] CHEN Y, BAI Y L, ZHANG W, et al. Destruction and construction learning for fine-grained image recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 5152-5161.
[31] ZHUANG P Q, WANG Y L, QIAO Y. Learning attentive pairwise interaction for fine-grained classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 13130-13137.
[32] DU R Y, CHANG D L, BHUNIA A K, et al. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2020: 153-168.
[33] SUN G L, CHOLAKKAL H, KHAN S, et al. Fine-grained recognition: accounting for subtle differences between similar classes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12047-12054.
[34] LUO W, YANG X T, MO X J, et al. Cross-X learning for fine-grained visual categorization[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 8241-8250.
[35] RAO Y M, CHEN G Y, LU J W, et al. Counterfactual attention learning for fine-grained visual categorization and re-identification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 1005-1014. |