[1] 顾清华, 骆家乐, 李学现. 基于小生境的多目标进化算法[J]. 计算机工程与应用, 2023, 59(1): 126-139.
GU Q H, LUO J L, LI X X. Evolutionary algorithm based on niche for multi-objective optimization[J]. Computer Engineering and Applications, 2023, 59(1): 126-139.
[2] JIN Y C, WANG H D, CHUGH T, et al. Data-driven evolutionary optimization: an overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3): 442-458.
[3] WANG H D, JIN Y C, JANSEN J O. Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 939-952.
[4] GUO D, CHAI T Y, DING J L, et al. Small data driven evolutionary multi-objective optimization of fused magnesium furnaces[C]//Proceedings of the IEEE Symposium Series on Computational Intelligence (IEEE SSCI), Dec 6-9, 2016. New York: IEEE, 2016: 1-8.
[5] JIN Y C. Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2): 61-70.
[6] ZHANG J Y, ZHOU A M, ZHANG G X, et al. A classification and Pareto domination based multiobjective evolutionary algorithm[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC), May 25-28, 2015. New York: IEEE, 2015: 2883-2890.
[7] PAN L Q, HE C, TIAN Y, et al. A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 74-88.
[8] 顾清华, 张晓玥, 陈露. 基于改进集成学习分类的代理辅助进化算法[J]. 控制与决策, 2022, 37(10): 2456-2466.
GU Q H, ZHANG X Y, CHEN C. Improved ensemble learning classification based surrogate-assisted evolutionary algorithm[J]. Control and Decision, 2022, 37(10): 2456-2466.
[9] KNOWLES J. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66.
[10] CHUGH T, JIN Y C, MIETTINEN K, et al. A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129-142.
[11] HABIB A, SINGH H K, CHUGH T, et al. A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi/many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 1000-1014.
[12] 陈万芬, 王宇嘉, 林炜星. 异构集成代理辅助多目标粒子群优化算法[J]. 计算机工程与应用, 2021, 57(23): 71-80.
CHEN W F, WANG Y J, LIN W X. Heterogeneous ensemble surrogate assisted multi-objective particle swarm Optimization Algorithm[J]. Computer Engineering and Applications, 2021, 57(23): 71-80.
[13] 白富生, 陈姣伶. 基于聚类的昂贵多目标优化代理辅助进化算法[J]. 运筹学学报, 2022, 26(4): 31-42.
BAI F S, CHEN J L. A clustering-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization[J]. Operations Research Transations, 2022, 26(4): 31-42.
[14] BUCHE D, SCHRAUDOLPH N N, KOUMOUTSAKOS P. Accelerating evolutionary algorithms with Gaussian process fitness function models[J]. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 2005, 35(2): 183-194.
[15] SHAHRIARI B, SWERSKY K, WANG Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175.
[16] ZHAN D W, XING H L. A fast Kriging-assisted evolutionary algorithm based on incremental learning[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(5): 941-955.
[17] YUAN J, LIU H L, GU F, et al. Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1): 75-86.
[18] TOAL D J J, BRESSLOFF N W, KEANE A J. Kriging hyperparameter tuning strategies[J]. AIAA Journal, 2008, 46(5): 1240-1252.
[19] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]. London: Springer-Verlag, 2005: 105-145.
[20] CHENG R, LI M, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3(1): 67-81.
[21] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.
[22] HAO H, ZHOU A M, QIAN H, et al. Expensive multiobjective optimization by relation learning and prediction[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 1157-1170.
[23] WANG X L, JIN Y C, SCHMITT S, et al. An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization[J]. Information Sciences, 2020, 519: 317-331.
[24] GUO D, WANG X, GAO K, et al. Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2084-2097.
[25] GUO D, JIN Y C, DING J L, et al. Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1012-1025.
[26] SONG Z S, WANG H D, HE C, et al. A Kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1013-1027.
[27] TIAN Y, CHENG R, ZHANG X Y, et al. PlatEMO: a MATLAB platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
[28] WEISE J, MOSTAGHIM S. A scalable many-objective pathfinding benchmark suite[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(1): 188-194. |