[1] 杨东华, 何涛, 王宏志, 等. 面向知识图谱的图嵌入学习研究进展[J]. 软件学报, 2022, 33(9): 3370-3390.
YANG D H, HE T, WANG H Z, et al. Survey on knowledge graph embedding learning[J]. Journal of Software, 2022, 33(9): 3370-3390.
[2] 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966-2994.
GUAN S P, JIN X D, JIA Y T, et al. Knowledge reasoning over knowledge graph: a survey[J]. Journal of Software, 2018, 29(10): 2966-2994.
[3] WU W Q, ZHU Z F, QI J T, et al. A dynamic graph expansion network for multi-hop knowledge base question answering[J]. Neurocomputing, 2023, 515: 37-47.
[4] SARABI S, HAN Q, VRIES B D, et al. Methodology for development of an expert system to derive knowledge from existing nature-based solutions experiences[J]. MethodsX, 2023, 10: 101978.
[5] CUI H, PENG T, XIAO F, et al. Incorporating anticipation embedding into reinforcement learning framework for multi-hop knowledge graph question answering[J]. Information Sciences, 2022, 619: 745-761.
[6] CHEN X J, JIA S B, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141(C): 112948.
[7] LIU H, ZHOU S W, CHEN C F, et al. Dynamic knowledge graph reasoning based on deep reinforcement learning[J]. Knowledge-Based Systems, 2022, 241: 108235.
[8] BORDES A, USUNIER N, GARCIADURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the Conference on Neural Information Processing Systems, 2013: 2787-2795.
[9] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014: 1112-1119.
[10] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 2181-2187.
[11] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2015: 687-696.
[12] WANG Q, MAO Z D, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
[13] LAO N, COHEN W W. Relational retrieval using a combination of?path-constrained random walks[J]. Machine Learning, 2010, 81(1): 53-67.
[14] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 2071-2080.
[15] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1811-1818.
[16] WANG Z K, LI L J, ZHEN D J. SRGCN: graph-based multi-hop reasoning on knowledge graphs[J]. Neurocomputing, 2021, 454: 280-290.
[17] ZHANG Y, MENG F D, ZHANG J C, et al. MKGN: a multi-dimensional knowledge enhanced graph network for multi-hop question and answering[J]. IEICE Transactions on Information and Systems, 2022, E105D(4): 807-819.
[18] LI D A, SHUYI M, ZHAO B F, et al. ConvHiA: convolutional network with hierarchical attention for knowledge graph multi-hop reasoning[J]. International Journal of Machine Learning and Cybernetics, 2023, 14: 1-15.
[19] DU Z X, ZHOU C, YAO J C, et al. CogKR: cognitive graph for multi-hop knowledge reasoning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(2): 1283-1295.
[20] WANG Z K, LI L J, ZENG D J. Hierarchical multihop reasoning on knowledge graphs[J]. IEEE Intelligent Systems, 2022, 37(1): 71-78.
[21] XIA Y, LUO J Y, LAN M J, et al. Reason more like human: incorporating meta information into hierarchical reinforcement learning for knowledge graph reasoning[J]. Applied Intelligence, 2022, 53: 13293-13308.
[22] SHANG B, ZHAO Y L, WANG C X, et al. Multi-hop knowledge reasoning with deep reinforcement learning[C]//Proceedings of the 2022 7th International Conference on Computational Intelligence and Applications (ICCIA), 2022: 27-31.
[23] TIWARI P, ZHU H Y, PANDEY H M. DAPath: distance-aware knowledge graph reasoning based on deep reinforcement learning[J]. Neural Networks, 2021, 135(5/6): 1-12.
[24] XIA Y, LAN M J, LUO J Y, et al. Iterative rule-guided reasoning over sparse knowledge graphs with deep reinforcement learning[J]. Information Processing and Management, 2022, 59(5): 103040.
[25] LI S Y, WANG H, PAN R, et al. MemoryPath: a deep reinforcement learning framework for incorporating memory component into knowledge graph reasoning[J]. Neurocomputing, 2021, 419: 273-286.
[26] MANDANA S, STEVEN K, ZHANG C X, et al. Heterogeneous relational reasoning in knowledge graphs with reinforcement learning[J]. Information Fusion, 2022, 88: 12-21.
[27] GAO C M, WANG S Q, LI S J, et al. CIRS: bursting filter bubbles by counterfactual interactive recommender system[J]. arXiv:2204.01266, 2022.
[28] SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[29] TOUTANOVA K, CHEN D Q, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2015: 1499-1509.
[30] XIONG W H, HOANG T, WANG Y W. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017.
[31] BALAZEVIC L, ALLEN C, HOSPEDALES T M. TuckER: tensor factorization for knowledge graph completion[J]. arXiv:1901.09590, 2019.
[32] NGUYEN D Q, NGUYEN T D. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018.
[33] DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning[J]. arXiv:1711.05851, 2017.
[34] NICKEL M, ROSASCO L, POGGIN T A. Holographic embeddings of knowledge graphs[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016: 1955-1961.
[35] SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the International Conference on Learning Representations, 2019. |