[1] HAN S G, WON S S, YOUNG J P. Space-constrained scheduling optimization method for minimizing the effects of stacking of trades[J]. Applied Sciences, 2021, 11(22): 11047.
[2] WANG C L, YANG X, LI H. Improved Q-learning applied to dynamic obstacle avoidance and path planning[J]. IEEE Access, 2022, 10: 92879-92888.
[3] ZHANG S H, CUI G F, WANG W D. Joint data downloading and resource management for small satellite cluster networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 887-901.
[4] PARK P, ERGEN S C, FISCHIONE C, et al. Wireless network design for control systems: a survey[J]. IEEE Communications Surveys & Tutorials, 2017, 20(2): 978-1013.
[5] 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986.
CHEN K R, MENG X F. Interpretability of machine learning [J]. Journal of Computer Research and Development, 2020, 57(9): 1971-1986.
[6] MARYAM S, MOHSEN A, HAMED H S. Dynamic distributed constraint optimization using multi-agent reinforcement learning[J]. Soft Computing, 2022, 26(8): 3601-3629.
[7] WANG X Y, LI Z B, LUO X Y, et al. A novel bi-level optimization model-based optimal energy scheduling for hybrid ship power system[J]. MRS Energy Sustainability, 2023, 10(2): 247-260.
[8] DEB K, RAO U B, KARTHIK S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling[C]//Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2007: 803-817.
[9] HATZAKIS I, WALLACE D. Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach[C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 1201-1208.
[10] ZHOU A, JIN Y, ZHANG Q, et al. Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization[C]//Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2007: 832-846.
[11] ZHOU A M, JIN Y C, ZHANG Q F. A population prediction strategy for evolutionary dynamic multi-objective optimization[J]. IEEE Transactions on Cybernetics, 2014, 44(1): 40-53.
[12] LI Q Y, ZOU J, SHENG X Y, et al. A predictive strategy based on special points for evolutionary?dynamic?multi-objective?optimization[J]. Soft Computing, 2019, 23(11): 3723-3739.
[13] 丁进良, 杨翠娥, 陈立鹏, 等. 基于参考点预测的动态多目标优化算法[J]. 自动化学报, 2017, 43(2): 313-320.
DING J L, YANG C E, CHEN L P, et al. Dynamic multi-objective optimization algorithm based on reference point prediction[J]. Acta Automatica Sinica, 2017, 43(2): 313-320.
[14] 郑金华, 彭舟, 邹娟, 等. 基于引导个体的预测策略求解动态多目标优化问题[J]. 电子学报, 2015, 43(9): 1816-1825.
ZHENG J H, PENG Z, ZOU J, et al. A prediction strategy based on guide-individual for dynamic multi-objective optimization[J]. Acta Electronica Sinica, 2015, 43(9): 1816-1825.
[15] YE Y L, LI L J, LIN Q Z, et al. Knowledge guided Bayesian classification for dynamic multi-objective optimization[J]. Knowledge-Based Systems, 2022, 250: 109173.
[16] 唐晓乐, 王宏伟, 夏浩, 等. 组合预测策略的动态多目标优化算法[J]. 计算机工程与设计, 2022, 43(7): 1930-1940.
TANG X L, WANG H W, XIA H, et al. Dynamic multi-objective optimization algorithm based on combination prediction strategy[J]. Computer Engineering and Design, 2012, 43(7): 1930-1940.
[17] ALINIYA Z, KHASTEH S H. A novel combinational response mechanism for dynamic multi-objective optimization[J]. Expert Systems with Applications, 2023, 233: 120951.
[18] ZHANG X, YU G, JIN Y C, et al. Elitism-based transfer learning and diversity maintenance for dynamic multi-objective optimization[J]. Information Sciences, 2023, 636: 118927.
[19] RONG M, GONG D W, ZHANG Y, et al. Multidirectional prediction approach for dynamic multi-objective optimization problems[J]. IEEE Transactions on Cybernetics, 2018, 49(9): 3362-3374.
[20] RONG M, GONG D W, PEDRYCZ W, et al. A multi-model prediction method for dynamic multi-objective evolutionary optimization[J]. IEEE Transactions on Computation, 2020, 24(2): 290-304.
[21] MCKAY M D, BECKMAN J R, CONOVER J W. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61.
[22] FARINA M, DEB K, AMATO P. Dynamic multi-objective optimization problems: test cases, approximations, and applications[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(5): 425-442.
[23] XU B, ZHANG Y, GONG D W, et al. Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 15(6): 1877-1890.
[24] YUAN Y, XU H, WANG B, et al. Balancing convergence and diversity in decomposition-based many-objective optimizers[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(2): 180-198.
[25] ZITALER E, THIELE L. Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
[26] SCHOTT J R. Fault tolerant design using single and multi-criteria genetic algorithms[D]. Massachusetts Institute of Technology, 1995.
[27] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, Paris, Sep 18-20, 2000. Berlin, Heidelberg: Springer, 2000: 849-858. |