[1] ZHU H, KE W, LI D, et al. Dual cross-attention learning for fine-grained visual categorization and object re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4692-4702.
[2] 厍向阳, 李蕊心, 叶鸥. 融合随机擦除和残差注意力网络的行人重识别[J]. 计算机工程与应用, 2022, 58(3): 215-221.
SHE X Y, LI R X, YE O. Pedestrian re-identification combining random erasing and residual attention network[J]. Computer Engineering and Applications, 2022, 58(3): 215-221.
[3] ZHANG X, LI D, WANG Z, et al. Implicit sample extension for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7369-7378.
[4] LIAO S, SHAO L. Graph sampling based deep metric learning for generalizable person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7359-7368.
[5] CHO Y, KIM W J, HONG S, et al. Part-based pseudo label refinement for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7308-7318.
[6] GU X, CHANG H, MA B, et al. Clothes-changing person re-identification with RGB modality only[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1060-1069.
[7] 王黎明,孙俊,陈祺东.加强重识别的行人多目标跟踪算法[J].计算机工程与应用, 2022, 58(21): 213-222.
WANG L M, SUN J, CHEN Q D. Pedestrian multi-object tracking algorithm with strengthened re-identification[J].Computer Engineering and Applications, 2022, 58(21): 213-222.
[8] 王仕宸, 黄凯, 陈志刚. 等. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87.
WANG S C, HUANG K, CHEN Z G, et al. Survey on 3D human pose estimation of deep learning[J]. Journal of? Frontiers of Computer Science and Technology, 2023, 17(1): 74-87.
[9] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177.
HE J, GUO Z L, LIU L Y, et al. Human activity recognition technology based on sliding window and convolutional neural network[J]. Electronics & Information Technology, 2022, 44(1): 168-177.
[10] ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: past, present and future[EB/OL]. [2022-03-15].https://arxiv.org/pdf/1610.02984.pdf.
[11] WANG H, SHEN J, LIU Y, et al. Nformer: robust person re-identification with neighbor transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7297-7307.
[12] SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision, 2018: 501-518.
[13] LIAO S, SHAO L. Interpretable and generalizable person re-identification with query-adaptive convolution and temporal lifting[C]//Proceedings of the16th European Conference on Computer Vision, Glasgow, UK, Aug 23-28, 2020. Cham: Springer International Publishing, 2020: 456-474.
[14] ZHENG Z, YANG X, YU Z, et al. Joint discriminative and generative learning for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2138-2147.
[15] 张正一, 丁建伟, 魏慧雯, 等. 基于注意力机制的多级 特征级联的行人重识别方法[J]. 激光与光电子学进展, 2021, 58(22): 374-383.
ZHANG Z Y, DING J W, WEI H W, et al. Cascaded multi-level features learning for attention based person re-identification[J]. Laser & Optoelectronics Progress, 2021, 58(22): 374-383.
[16] 李杰. 结合注意力和纹理特征增强的行人再识别[J]. 计算机科学与探索, 2022, 16(3): 661-668.
LI J. Attention and texture feature enhancement for person re-identification[J]. Journal of? Frontiers of Computer Science and Technology, 2022, 16(3): 661-668.
[17] 温静, 张福康. 基于多粒度信息融合的无监督行人重识别方法[J]. 计算机工程与应用, 2023, 59(13): 99-109.
WEN J, ZHANG F K. Unsupervised person re-identification method based on multi-granularity information fusion[J]. Computer Engineering and Applications, 2023, 59(13): 99-109.
[18] 曾涛, 薛峰, 杨添. 面向行人重识别的通道与空间双重注意力网络[J]. 计算机工程, 2022, 48(12): 281-287.
ZENG T, XUE F, YANG T. Channel and spatial dual-attention network for person re-identification[J]. Computer Engineering, 2022, 48(12): 281-287.
[19] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[20] ZHANG H, ZU K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network[C]//Proceedings of the Asian Conference on Computer Vision, 2022: 1161-1177.
[21] SUN Y, ZHENG L, DENG W, et al. SVDNet for pedestrian retrieval[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:3820-3828.
[22] DENG J, GUO J, XUE N, et al. Arcface: additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4690-4699.
[23] ZHU L, WANG X, KE Z, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[24] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. [2022-12-13]. https://arxiv.org/pdf/1703.07737.pdf.
[25] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 2015 International Conference on Machine Learning. New York: ACM, 2015: 448-456.
[26] ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2016.
[27] HE T, JIN X, SHEN X, et al. Dense interaction learning for video-based person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1490-1501.
[28] WEI L, ZHANG S, WEN G, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[29] LUO H, GU Y Z, LIAO X Y, et al. Bag of tricks and a strong baseline for deep person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, CA, USA: IEEE Press, 2019: 1487-1495.
[30] LI M, ZHU X, GONG S. Unsupervised tracklet re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(7): 1770-1782.
[31] ZHONG Z, ZHENG L, LUO Z, et al. Invariance matters: exemplar memory for domain adaptive re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 598-607.
[32] WANG G, YUAN Y, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 274-282.
[33] WANG Z, ZHANG J, ZHENG L, et al. CycAs: self-supervised cycle association for learning re-identifiable descripttions[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 72-88.
[34] GE Y, CHEN D, LI H. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on re-identification[EB/OL]. [2022-03-15]. https://arxiv.org/pdf/2001.01526.pdf.
[35] LI W, ZHU X T, GONG S G, et al. Harmonious attention network for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2285-2294.
[36] 孙明浩, 王洪元, 吴琳钰, 等. 基于特征金字塔分支和非局部关注的行人重识别[J]. 数据采集与处理, 2023, 38(1): 121-131.
SUN M H, WANG H Y, WU L Y, et al. Person re-identification based on feature pyramid branch and non-local attention[J]. Journal of Data Acquisition and Processing, 2023, 38(1): 121-131.
[37] 朱利, 林欣, 徐亦飞, 等. 基于城市信息单元和差异注意力的多层行人重识别技术[J]. 集成技术, 2023, 12(1): 91-104.
ZHU L, LIN X, XU Y F, et al. Multi-level person re-identification based on urban information unit and diff attention scheme[J]. Journal of Integration Technology, 2023, 12(1): 91-104.
[38] 钱亚萍, 王凤随, 熊磊, 等. 联合特征细化和耐噪声对比学习的无监督行人重识别[J]. 光电子· 激光, 2023, 34(7): 762-770.
QIAN Y P, WANG F S, XIONG L, et al. Joint feature refinement and noise-tolerant comparative learning for unsupervised person re-identification[J]. Journal of Optoelectronics·Laser, 2023, 34(7): 762-770. |