[1] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013.
[2] 廖胜兰, 吉建民, 俞畅, 等. 基于BERT模型与知识蒸馏的意图分类方法[J]. 计算机工程, 2021, 47(5): 73-79.
LIAO S L, JI J M, YU C, et al. Intention classification method based on BERT model and knowledge distillation[J]. Computer Engineering, 2021, 47(5): 73-79.
[3] PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 1532-1543.
[4] 方炯焜, 陈平华, 廖文雄. 结合GloVe和GRU的文本分类模型[J]. 计算机工程与应用, 2020, 56(20): 98-103.
FANG J K, CHEN P H, LIAO W X. Text classification model based on GloVe and GRU[J]. Computer Engineering and Applications, 2020, 56(20): 98-103.
[5] 周燕. 基于GloVe模型和注意力机制Bi-LSTM的文本分类方法[J]. 电子测量技术, 2022, 45(7): 42-47.
ZHOU Y. Text classification method based on GloVe model and attention Mechanism Bi-LSTM[J]. Electronic Measurement Technology, 2022, 45(7): 42-47.
[6] SHAHBAZ M, SURESH L, REXFORD J, et al. Elmo: source routed multicast for public clouds[J]. IEEE/ACM Transactions on Networking, 2020, 28(6): 2587-2600.
[7] 王雨嫣, 廖柏林, 彭晨, 等. 递归神经网络研究综述[J]. 吉首大学学报 (自然科学版), 2021, 42(1): 41-48.
WANG Y Y, LIAO B L, PENG C, et al. Research review of recurrent neural networks[J]. Journal of Jishou University (Natural Sciences Edition), 2021, 42(1): 41-48.
[8] KIM Y. Convolutional neural networks for sentence classification[J]. arXiv:1408.5882, 2014.
[9] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[J]. arXiv:1404.2188, 2014.
[10] 马建红, 刘亚培, 刘言东, 等. CGGA: 一种CNN与并行门控机制混合的文本分类模型[J]. 小型微型计算机系统, 2021, 42(3): 516-521.
MA J H, LIU Y P, LIU Y D, et al. CGGA: text classification model based on CNN and parallel gating mechanism[J]. Journal of Chinese Computer Systems, 2021, 42(3): 516-521.
[11] 滕金保, 孔韦韦, 田乔鑫, 等. 基于LSTM-Attention与CNN混合模型的文本分类方法[J]. 计算机工程与应用, 2021, 57(14): 126-133.
TENG J B, KONG W W, TIAN Q X, et al. Text classification method based on LSTM-attention and CNN hybrid model[J]. Computer Engineering and Applications, 2021, 57(14): 126-133.
[12] 宋中山, 牛悦, 郑禄, 等. 多尺度CNN卷积与全局关系的中文文本分类模型[J]. 计算机工程与应用, 2023, 59(20): 103-110.
SONG Z S, NIU Y, ZHENG L, et al. Multiscale double-layer convolution and global feature text classification model[J]. Computer Engineering and Applications, 2023, 59(20): 103-110.
[13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[14] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. (2018-12-01)[2023-07-19]. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_
paper.pdf.
[15] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[16] HAO Y, DONG L, WEI F, et al. Investigating learning dynamics of BERT fine-tuning[C]//Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, 2020: 87-92.
[17] WILLIAMS A, NANGIA N, BOWMAN S R. A broad-coverage challenge corpus for sentence understanding through inference[J]. arXiv:1704.05426, 2017.
[18] MCCOY R T, PAVLICK E, LINZEN T. Right for the wrong reasons: diagnosing syntactic heuristics in natural language inference[J]. arXiv:1902.01007, 2019.
[19] THORNE J, VLACHOS A, CHRISTODOULOPOULOS C, et al. FEVER: a large-scale dataset for fact extraction and verification[J]. arXiv:1803.05355, 2018.
[20] SCHUSTER T, SHAH D J, YEO Y J S, et al. Towards debiasing fact verification models[J]. arXiv:1908.05267, 2019.
[21] SHANKAR I, NIKHIL D, KORNEL C. First quora dataset release: question pairs[EB/OL]. (2017-12-01)[2023-04-27]. https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs.
[22] ZHANG Y, BALDRIDGE J, HE L. PAWS: paraphrase adversaries from word scrambling[J]. arXiv:1904.01130, 2019.
[23] TUR G, HAKKANI-TUR D, HECK L. What is left to be understood in ATIS?[C]//Proceedings of the 2010 IEEE Spoken Language Technology Workshop, 2010: 19-24.
[24] COUCKE A, SAADE A, BALL A, et al. Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces[J]. arXiv:1805.10190, 2018.
[25] UTAMA P A, MOOSAVI N S, GUREVYCH I. Towards debiasing NLU models from unknown biases[J]. arXiv:2009.12303, 2020.
[26] CHEN J, SHEN D, CHEN W, et al. HiddenCut: simple data augmentation for natural language understanding with better generalizability[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 4380-4390.
[27] MEISSNER J M, SUGAWARA S, AIZAWA A. Debiasing masks: a new framework for shortcut mitigation in NLU[J]. arXiv:2210.16079, 2022.
[28] WU T, GUI T. Less is better: recovering intended-feature subspace to robustify NLU models[J]. arXiv:2209.07879, 2022.
[29] DOU S, ZHENG R, WU T, et al. Decorrelate irrelevant, purify relevant: overcome textual spurious correlations from a feature perspective[J]. arXiv:2202.08048, 2022.
[30] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[J]. arXiv:2302.13971, 2023.
[31] LIU B, LANE I. Attention-based recurrent neural network models for joint intent detection and slot filling[J]. arXiv:1609.01454, 2016.
[32] CHEN Q, ZHUO Z, WANG W. BERT for joint intent classification and slot filling[J]. arXiv:1902.10909, 2019.
[33] ZHANG L, MA D, ZHANG X, et al. Graph LSTM with context-gated mechanism for spoken language understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 9539-9546.
[34] WANG J, WEI K, RADFAR M, et al. Encoding syntactic knowledge in transformer encoder for intent detection and slot filling[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 13943-13951.
[35] HOU C, LI J, YU H, et al. Prior knowledge modeling for joint intent detection and slot filling[C]//Proceedings of the 15th International FLINS Conference, 2023: 3-10. |