[1] 丁宇, 冉华明. 地形遮蔽下雷达网的融合探测包络计算[J]. 计算机仿真, 2021, 38(9): 14-18.
DING Y, RAN H M. Calculation of radar network fusion detection envelope under the terrain[J]. Computer Simulation, 2021, 38(9): 14-18.
[2] 魏贤智, 杨凤成, 韩庆, 等. 基于地形遮蔽的飞行器暴露范围计算[J]. 计算机测量与控制, 2012, 20(1): 132-134.
WEI X Z, YANG F C, HAN Q, et al. Calculation of exposed scope of aircraft based on terrain masking[J]. Computer Measurement & Control, 2012, 20(1): 132-134.
[3] XI L, ZHANG X. Simulation analysis of telemetry antenna visibility under the influence of terrain[C]//2022 5th International Conference on Communication Engineering and Technology (ICCET), Shanghai, China, 2022: 86-89.
[4] 周嘉健, 徐黄飞, 邹庆彪, 等. 基于SRTM地形数据天气雷达地形遮挡分析系统开发及应用[J]. 热带气象学报, 2021, 37(2): 258-267.
ZHOU J J, XU H F, ZOU Q B, et al. Development and application of terrain occlusion analysis system for weather radar based on SRTM terrain data[J]. Journal of Tropical Meteorology, 2021, 37(2): 258-267.
[5] 郭挺, 邱新法, 曾燕, 等. 起伏地形下福建省太阳总辐射的分布式模拟[J]. 科学技术与工程, 2019, 19(12): 33-40.
GUO T, QIU X F, ZENG Y, et al. Distributed modelling of total solar radiation of rugged terrain over Fujian province[J]. Science Technology and Engineering, 2019, 19(12): 33-40.
[6] RUDA D. An extension of a very fast direct finite element Poisson solver on lower precision accelerator hardware towards semi-structured grids[C]//The 8th European Congress on Computational Methods in Applied Sciences and Engineering, 2022.
[7] 董晶, 陈辉, 刘云龙. 基于地球曲率的雷达地形遮蔽盲区计算[J]. 中国电子科学研究院学报, 2021, 16(4): 408-413.
DONG J, CHEN H, LIU Y L. Calculation of radar terrain blind space based on earth curvature[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(4): 408-413.
[8] 沈笑云, 尤佳林, 张思远. 多因素影响下的ADS-B地面站覆盖及仿真[J]. 计算机测量与控制, 2016, 24(8): 186-189.
SHEN X Y, YOU J L, ZHANG S Y. Influence of meteorological factors on the signal coverage of ADS-B station[J]. Computer Measurement & Control, 2016, 24(8): 186-189.
[9] 冯克涛, 李晓毅, 曲晨, 等. 基于DEM的民航地空VHF通信有效覆盖仿真研究[J]. 系统工程与电子技术, 2022, 44(2): 684-695.
FENG K T, LI X Y, QU C, et al. Simulation research on effective coverage of civil aviation ground to air VHF communication based on DEM[J]. Systems Engineering and Electronics, 2022, 44(2): 684-695.
[10] 钱学飞, 沈映政, 王友昆, 等. 基于数字地形图的机场导航台遮蔽角计算方法[J]. 测绘工程, 2021, 30(6): 60-64.
QIAN X F, SHEN Y Z, WANG Y K, et al. Research on calculation method of shelter angle of airport navigation station based on digital topographic map[J]. Engineering of Surveying and Mapping, 2021, 30(6): 60-64.
[11] 黄亚锋, 黄大丰, 张豹. 一种基于微服务和并行计算架构的雷达组网探测威力计算服务体系[J]. 中国电子科学研究院学报, 2020, 15(12): 1205-1211.
HUANG Y F, HUANG D F, ZHANG B. A service system of radar netwrok power range calculation based on microservice and parallel computing architecture[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(12): 1205-1211.
[12] XUE H , SHEN L. Research on fast computing and 3D visualization of radar terrain masking blind space[C]//IEEE International Conference on Oxide Materials for Electronic Engineering, 2012.
[13] WANG D, YANG Y, QIU A, et al. A CUDA-based parallel geographically weighted regression for large-scale geographic data[J]. ISPRS International Journal of Geo-Information, 2020, 9(11): 653.
[14] WANG Y, ZHAO Y, LI W, et al. Using a GPU to accelerate a longwave radiative transfer model with efficient CUDA-based methods[J]. Applied Sciences, 2019, 9(19): 4039.
[15] WU Q, CHEN Y, WILSON J P, et al. An effective parallelization algorithm for DEM generalization based on CUDA[J]. Environmental Modelling & Software, 2019, 114: 64-74.
[16] HUDI R, KARTIKA A L, MARCELL D J, et al Matrix multiplication analysis on sequential and parallel computation using CUDA[C]//2022 1st International Conference on Technology Innovation and Its Applications (ICTIIA), Tangerang, Indonesia, 2022: 1-6.
[17] LAI J, YU H, TIAN Z, et al. Hybrid MPI and CUDA parallelization for CFD applications on multi-GPU HPC clusters[J]. Scientific Programming, 2020, 2020: 1-15.
[18] AFZAL A, ANSARI Z, RAMIS M K. Parallel performance analysis of coupled heat and fluid flow in parallel plate channel using CUDA[J]. Computational and Applied Mathematics, 2020, 39: 1-25.
[19] JASSIM M A, MOHAMMED D M T. Evaluation of the direct UTM coordinates transformation method based on the standard 7-parameters transformation[J]. Journal of Civil Engineering and Architecture, 2022, 16: 413-419.
[20] JIMENEZ-JIMENEZ S I, OJEDA-BUSTAMANTE W, MARCIAL-PABLO M D J, et al. Digital terrain models generated with low-cost UAV photogrammetry: methodology and accuracy[J]. ISPRS International Journal of Geo-Information, 2021, 10(5): 285.
[21] ISLAM R T, MIM M, TAHIAT S N F, et al. Predicting urban trends of growth with Google Earth Engine[D]. Brac University, 2022.
[22] ZENG Y R, CHANG Y S, FANG Y H. Data visualization for air quality analysis on bigdata platform[C]//2019 International Conference on System Science and Engineering (ICSSE), 2019: 313-317.
[23] RAHEEM, ARAM M, IBRAHIM N, et al. Inverse distance weighted (IDW) and kriging approaches integrated with linear single and multi-regression models to assess particular physico-consolidation soil properties for Kirkuk city[J]. Modeling Earth Systems and Environment, 2023, 9: 3999-4021.
[24] HE X, STAMNES K, BAI Y, et al. Effects of earth curvature on atmospheric correction for ocean color remote sensing[J]. Remote Sensing of Environment, 2018, 209: 118-133.
[25] MURADOVA G, HEMATYAR M, JAMALOVA J. Advantages of redis in-memory database to efficiently search for healthcare medical supplies using geospatial data[C]//2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT), Washington DC, DC, USA, 2022: 1-5.
[26] DEHECQ A, GARDNER A S, AlEXANDROV O, et al. Automated processing of declassified KH-9 Hexagon satellite images for global elevation change analysis since the 1970s[J]. Frontiers in Earth Science, 2020, 8: 566802.
[27] SERPA M S, MOREIRA F B, NAVAUX P O A, et al. Memory performance and bottlenecks in multicore and gpu architectures[C]//2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2019: 233-236. |