[1] CHEN Y C, ZHU X, ZHENG W S, et al. Person re-identification by camera correlation aware feature augmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(2): 392-408.
[2] 温静, 张福康. 基于多粒度信息融合的无监督行人重识别方法[J]. 计算机工程与应用, 2023, 59(13): 99-109.
WEN J, ZHANG F K. Unsupervised person re-identification method based on multi-granularity information fusion[J]. Computer Engineering and Applications, 2023, 59(13): 99-109.
[3] KARANAM S, LI Y, RADKE R J. Person re-identification with discriminatively trained viewpoint invariant dictionaries[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 4516-4524.
[4] WANG Y, WANG L, YOU Y, et al. Resource aware person re-identification across multiple resolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8042-8051.
[5] 郑爱华, 冯孟雅, 李成龙, 等. 面向跨模态行人重识别的双向动态交互网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 371-382.
ZHENG A H, FENG M Y, LI C L, et al. Bi-directional dynamic interaction network for cross-modality person re-identification[J]. Journal of Computer-Aided Design and Computer Graphics, 2023, 35(3): 371-382.
[6] DAS A, PANDA R, ROY-CHOWDHURY A. Active image pair selection for continuous person re-identification[C]//Proceedings of the 2015 IEEE International Conference on Image Processing, 2015: 4263-4267.
[7] SU C, ZHANG S, XING J, et al. Deep attributes driven multi-camera person re-identification[C]//Proceedings of the European Conference on Computer Vision, 2016: 475-491.
[8] BAK S, CARR P. One-shot metric learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2990-2999.
[9] HU Y, YI D, LIAO S, et al. Cross dataset person re-identification[C]//Proceedings of the Asian Conference on Computer Vision, 2014: 650-664.
[10] SONG J, YANG Y, SONG Y Z, et al. Generalizable person re-identification by domain-invariant mapping network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 719-728.
[11] JIA J, RUAN Q, HOSPEDALES T M. Frustratingly easy person re-identification: generalizing person RE-ID in practice[J]. arXiv:1905.03422, 2019.
[12] SONG C, HUANG Y, OUYANG W, et al. Mask-guided contrastive attention model for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1179-1188.
[13] JIN X, LAN C, ZENG W, et al. Style normalization and restitution for generalizable person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3143-3152.
[14] YUAN Y, CHEN W, CHEN T, et al. Calibrated domain-invariant learning for highly generalizable large scale re-identification[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 3589-3598.
[15] 熊明福, 肖应雄, 陈佳, 等. 二次聚类的无监督行人重识别方法[J]. 计算机工程与应用, 2024, 60(1): 227-235.
XIONG M F, XIAO Y X, CHEN J, et al. Unsupervised person re-identification based on quadratic clustering[J]. Computer Engineering and Applications, 2024, 60(1): 227-235.
[16] ZHAO Y, ZHONG Z, YANG F, et al. Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6277-6286.
[17] 杨永胜, 邓淼磊, 张德贤. 基于IBN-Net和通道注意力的行人重识别方法[J]. 计算机工程与应用, 2023, 59(17): 143-151.
YANG Y S, DENG M L, ZHANG D X. Person re-identification method based on IBN-Net and channel attention[J]. Computer Engineering and Applications, 2023, 59(17): 143-151.
[18] BAI Y, JIAO J, CE W, et al. Person30k: a dual-meta generalization network for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2123-2132.
[19] SUH Y, HAN B, KIM W, et al. Stochastic class-based hard example mining for deep metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7251-7259.
[20] SMIRNOV E, MELNIKOV A, NOVOSELOV S, et al. Doppelganger mining for face representation learning[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017: 1916-1923.
[21] WANG C, ZHANG X, LAN X. How to train triplet networks with 100k identities?[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017: 1907-1915.
[22] HARWOOD B, KUMAR B G V, CARNEIRO G, et al. Smart mining for deep metric learning[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2821-2829.
[23] YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 2872-2893.
[24] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823.
[25] LIU W, WEN Y, YU Z, et al. SphereFace: deep hypersphere embedding for face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 212-220.
[26] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the European Conference on Computer Vision, 2016: 499-515.
[27] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5693-5703.
[28] LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 152-159.
[29] ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1116-1124.
[30] WEI L, ZHANG S, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 79-88.
[31] LIAO S, SHAO L. Interpretable and generalizable person re-identification with query-adaptive convolution and temporal lifting[C]//Proceedings of the European Conference on Computer Vision, 2020: 456-474.
[32] ZHOU K, YANG Y. CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]//Proceedings of the CVF International Conference on Computer Vision, 2019: 3702-3712.
[33] ZHOU K, YANG Y, CAVALLARO A, et al. Learning generalisable omni-scale representations for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9): 5056-5069.
[34] QIAN X, FU Y, XIANG T, et al. Leader-based multi-scale attention deep architecture for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 371-385.
[35] ZHUANG Z, WEI L, XIE L, et al. Rethinking the distribution gap of person re-identification with camera-based batch normalization[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 140-157.
[36] WANG G, YUAN Y, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia, 2018: 274-282.
[37] NI H, SONG J, LUO X, et al. Meta distribution alignment for generalizable person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2487-2496.
[38] LIAO S, SHAO L. Graph sampling based deep metric learning for generalizable person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7359-7368. |