[1] DONG Y N, LIU Q W, DU B, et al. Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2022, 31: 1559-1572.
[2] HASSANZADEH T, ESSAM D, SARKER R. EvoDCNN: an evolutionary deep convolutional neural network for image classification[J]. Neurocomputing, 2022, 488: 271-283.
[3] CHANG Y L, TAN T H, LEE W H, et al. Consolidated convolutional neural network for hyperspectral image classification[J]. Remote Sensing, 2022, 14(7): 1571.
[4] ZHANG R, BAI X L, PAN L H, et al. Zero-small sample classification method with model structure self-optimization and its application in capability evaluation[J]. Applied Intelligence, 2022, 52: 5696-5717.
[5] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[6] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[7] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[8] ZHANG Z, LIU S H, ZHANG Y, et al. RS-DARTS: a convolutional neural architecture search for remote sensing image scene classification[J]. Remote Sensing, 2021, 14(1): 141.
[9] LIU X B, ZHANG C C, CAI Z H, et al. Continuous particle swarm optimization-based deep learning architecture search for hyperspectral image classification[J]. Remote Sensing, 2021, 13(6): 1082.
[10] WU J J, KUANG H Y, LU Q H, et al. M-FasterSeg: an efficient semantic segmentation network based on neural architecture search[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104962.
[11] WANG Y, LI Y S, CHEN W, et al. DNAS: decoupling neural architecture search for high-resolution remote sensing image semantic segmentation[J]. Remote Sensing, 2022, 14(16): 3864.
[12] WU H W, ZHOU J T. IID-Net: image inpainting detection network via neural architecture search and attention[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(3): 1172-1185.
[13] GUPTA A, SHETH P, XIE P T. Neural architecture search for pneumonia diagnosis from chest X-rays[J]. Scientific Reports, 2022, 12(1): 1-12.
[14] BAKER B, GUPTA O, NAIK N, et al. Designing neural network architectures using reinforcement learning[J]. arXiv:1611.02167, 2016.
[15] HU Y, WANG X, LI L, et al. Improving one-shot NAS with shrinking-and-expanding supernet[J]. Pattern Recognition, 2021, 118: 108025.
[16] ZHANG M, LI H, PAN S, et al. One-shot neural architecture search: maximising diversity to overcome catastrophic forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(9): 2921-2935.
[17] ZHANG J, LI D, WANG L, et al. One-shot neural architecture search by dynamically pruning supernet in hierarchical order[J]. International Journal of Neural Systems, 2021, 31(7): 2150029.
[18] YING C, KLEIN A, CHRISTIANSEN E, et al. Nas-bench-101: towards reproducible neural architecture search[C]//International Conference on Machine Learning, 2019: 7105-7114.
[19] DONG X, YANG Y. Nas-bench-201: extending the scope of reproducible neural architecture search[J]. arXiv:2001.00326, 2020.
[20] DONG X, LIU L, MUSIAL K, et al. Nats-bench: benchmarking nas algorithms for architecture topology and size[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3634-3646.
[21] CAI H, GAN C, WANG T, et al. Once-for-all: train one network and specialize it for efficient deployment[J]. arXiv:1908.09791, 2019.
[22] LIU H, SIMONYAN K, YANG Y. Darts: differentiable architecture search[J]. arXiv:1806.09055, 2018.
[23] XU Y, XIE L, ZHANG X, et al. Pc-darts: partial channel connections for memory-efficient architecture search[J]. arXiv:1907.05737, 2019.
[24] HU S, XIE S, ZHENG H, et al. DSNAS: direct neural architecture search without parameter retraining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12084-12092.
[25] ZHENG X, JI R R, CHEN Y, et al. MIGO-NAS: towards fast and generalizable neural architecture search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(9): 2936-2952.
[26] CHEN W, GONG X, WANG Z. Neural architecture search on imagenet in four GPU hours: a theoretically inspired perspective[J]. arXiv:2102.11535, 2021.
[27] LI S, MAO Y X, ZHANG F C. et al. DLW-NAS: differentiable light-weight neural architecture search[J] Cognitive Computation, 2022, 15: 429-439.
[28] DING Y D, WU Y, HUANG C Y. et al. NAP: neural architecture search with pruning[J]. Neurocomputing, 2022, 477: 85-95.
[29] AKIMOTO Y, SHIRAKAWA S, YOSHINARI N, et al. Adaptive stochastic natural gradient method for one-shot neural architecture search[C]//International Conference on Machine Learning, 2019: 171-180.
[30] ZHENG X, JI R, TANG L, et al. Multinomial distribution learning for effective neural architecture search[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1304-1313.
[31] ZHENG X, JI R, TANG L, et al. Dynamic distribution pruning for efficient network architecture search[J]. arXiv:1905.13543, 2019.
[32] SINHA N, CHEN K W. Evolving neural architecture using one shot model[C]//Proceedings of the Genetic and Evolutionary Computation Conference, 2021: 910-918. |