计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (1): 28-39.DOI: 10.3778/j.issn.1002-8331.2305-0291

• 热点与综述 • 上一篇    下一篇

光电载荷下的红外和可见光图像融合综述

刘爽利,黄雪莉,刘磊,谢宇,张锦宝,杨江楠   

  1. 西南科技大学 信息工程学院,四川 绵阳 621000
  • 出版日期:2024-01-01 发布日期:2024-01-01

Infrared and Visible Image Fusion Under Photoelectric Loads

LIU Shuangli, HUANG Xueli, LIU Lei, XIE Yu, ZHANG Jinbao, YANG Jiangnan   

  1. School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000,China
  • Online:2024-01-01 Published:2024-01-01

摘要: 随着机载光电平台在军事、民用等领域的应用,红外与可见光图像的增强和融合技术逐渐成为研究的热点方向。红外设备主要依靠物体本身的热辐射进行成像,适用于恶劣自然环境和隐秘场所等特殊场景,但存在成像质量不佳、图像对比度较低、纹理细节不丰富等缺点;可见光图像的纹理细节和对比度更适合人类的视觉感知,但可见光图像在烟雾、夜间等条件下的成像效果差,不适用于隐秘的场所。因此,研究人员提出了既有可见光图像边缘、细节信息又有红外热辐射目标信息的互补图像融合方法。结合红外与可见光图像特点,对目前适用于机载平台的传统红外与可见光图像融合方法进行整理和综述,给出了现有红外与可见光融合算法中弱小目标、纹理信息缺失和计算效率问题的改进思路,并对光电载荷背景下传统红外与可见光图像融合技术未来的发展进行了展望。

关键词: 红外与可见光, 图像融合, 光电载荷

Abstract: With the application of airborne photoelectric platform in military and civil fields, the enhancement and fusion technology of infrared and visible image has gradually become a hot research direction. Infrared equipment mainly relies on the thermal radiation of the object itself for imaging, which is suitable for harsh natural environment and secret places and other special scenes, but it has some shortcomings such as poor imaging quality, low image contrast, not rich texture details and so on. The texture details and contrast of visible images are more suitable for human visual perception, but the imaging effect of visible images is poor under conditions such as smoke and night, so it is not suitable for hidden places. Therefore, the researchers proposed a complementary image fusion method with both visible image edge and detail information and infrared thermal radiation target information. Based on the characteristics of infrared and visible images, this paper summarizes the traditional infrared and visible image fusion methods applicable to airborne platforms, and gives the improvement ideas of dim small targets, texture information loss and computational efficiency in the existing infrared and visible image fusion algorithms. The future development of traditional infrared and visible image fusion technology under the background of photoelectric load is prospected.

Key words: infrared and visible light, image fusion, photoelectric load