计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (7): 285-293.DOI: 10.3778/j.issn.1002-8331.2209-0364

• 工程与应用 • 上一篇    下一篇

基于双模态深度学习的钢轨表面缺陷检测方法

赵宏伟,郑嘉俊,赵鑫欣,王胜春,李浥东   

  1. 1.北京交通大学 计算机与信息技术学院,北京 100044
    2.中山大学 电子与通信工程学院,广东 深圳 518107
    3.中国铁道科学研究院集团有限公司 基础设施检测研究所,北京 100081
  • 出版日期:2023-04-01 发布日期:2023-04-01

Rail Surface Defect Method Based on Bimodal-Modal Deep Learning

ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong   

  1. 1.School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
    2.School of Electronic and Communication Engineering, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
    3.Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
  • Online:2023-04-01 Published:2023-04-01

摘要: 针对目前钢轨顶面擦伤检测系统缺少第三维关键深度信息,检测结果易受干扰误报率高的问题,提出了一种基于双模态结构光传感器的钢轨表面缺陷检测方法。通过构建轨道表面缺陷的多模态深度学习检测网络,可以检测双模态钢轨图像中的擦伤缺陷。提出的深度网络分别融合了双模态图像的多尺度特征,并进行多尺度钢轨顶面擦伤检测。实验结果表明,该方法在显著降低检测误报的同时能够保持较高的检出率。与当前缺陷检测中常见的深度学习检测模型对比,平均精度均值(mAP)有大幅提升,性能优于以往的检测算法,在钢轨顶面擦伤检测任务中的应用前景良好。

关键词: 词缺陷检测, 多模态, 深度学习, 钢轨表面

Abstract: Aiming at the problem that the current rail surface detection system lacks the third dimension key depth information and the detection results are vulnerable to interference with high false alarm rate, the paper designs a rail surface defect detection system and method based on dual mode structured light sensor. By constructing a multi-mode depth learning detection network for rail surface defects, the defects in the bimodal rail images can be detected. The depth network proposed fuses multi-scale features of bimodal images respectively, and conducts multi-scale rail head surface defect detection. Experimental results show that this method can significantly reduce false positives while maintaining a high detection rate. Compared with the common depth learning detection model in the current defect detection, the mean average accuracy(mAP) has been greatly improved, and its performance is better than the previous detection algorithm, which has a good application prospect in the rail head surface scratch detection task.

Key words: defect detection, multi-modal, deep learning, rail head surface