计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (18): 207-217.DOI: 10.3778/j.issn.1002-8331.2305-0013

• 图形图像处理 • 上一篇    下一篇

面向复杂道路目标检测的YOLOv5算法优化研究

刘辉,刘鑫满,刘大东   

  1. 1.重庆邮电大学 通信与信息工程学院,重庆 400065
    2.重庆邮电大学 数智技术应用研究中心,重庆 400065
  • 出版日期:2023-09-15 发布日期:2023-09-15

Research on Optimization of YOLOv5 Detection Algorithm for Object in Complex Road

LIU Hui, LIU Xinman, LIU Dadong   

  1. 1.School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2.Research Center of Digital Intelligence Technology Application, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Online:2023-09-15 Published:2023-09-15

摘要: 针对现有目标检测算法对复杂道路场景中小目标、遮挡目标的误检、漏检率较高等问题,提出了基于YOLOv5的复杂道路目标检测的改进模型DPE-YOLO。该改进方法在预设锚框方面,提出基于样本密度的[K]-means+D聚类算法,生成更有效的预设锚框,缩短收敛路径从而有效提高检测精度;在特征提取方面,设计了PAA模块代替原骨干网络中的C3模块,模块采用对基于注意力机制的多梯度流残差结构设计,可提升对细节信息的提取能力,改善对道路小目标的漏检、误检问题;在定位精度方面,引入EIOU loss,降低模型对遮挡目标的漏检率。实验数据显示,在KITTI数据集和Udacity数据集上,改进算法与原算法相比平均精度均值(mAP)分别提升了2.8个百分点和1.6个百分点,mAP@0.5:0.9分别提升了2.7个百分点和2.9个百分点。实验结果表明,DPE-YOLO有效提升了对复杂道路场景中小目标和遮挡目标的检测性能,能更好地满足自动驾驶场景中的目标检测需求。

关键词: 自动驾驶, 聚类算法, 多梯度流, 注意力机制, 损失函数

Abstract: Aiming at the problems of false detection and high missed detection rate of small targets and occluded targets in complex road scenarios by existing object detection algorithms, DPE-YOLO, a complex road object detection model based on improved YOLOv5 is proposed. In terms of preset anchor boxes, a [K]-means+D clustering algorithm based on sample density is proposed in the improvement method to generate more effective preset anchor boxes, shorten the convergence path, and effectively improve the detection accuracy. In terms of feature extraction, the PAA module is designed to replace the C3 module in the original backbone network, and the module adopts the design of multi-gradient flow residual structure based on attention mechanism, which can improve the extraction ability of detailed information and improve the problem of missed and false detection of small road targets. Finally, in terms of positioning accuracy, EIOU loss is introduced to reduce the missed detection rate of the model for occlusion targets. Experimental data show that on KITTI dataset and Udacity dataset, the mean average precision(mAP) of the improved algorithm is increased by 2.8 percentage points and 1.6 percentage points, and the mAP@0.5:0.9 is increased by 2.7 percentage points and 2.9 percentage points, respectively, compared with the original algorithm. Experimental results show that DPE-YOLOv5 can effectively improve the detection performance of small targets and occluded targets in complex road scenarios, and can better meet the detection requirements in autonomous driving scenarios.

Key words: autonomous driving, clustering algorithm, multi-gradient flow, attention mechanism, loss function