计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (18): 14-27.DOI: 10.3778/j.issn.1002-8331.2210-0143
彭大鑫,甄彤,李智慧
出版日期:
2023-09-15
发布日期:
2023-09-15
PENG Daxin, ZHEN Tong, LI Zhihui
Online:
2023-09-15
Published:
2023-09-15
摘要: 低光照图像增强目的是从低光照条件下恢复细节完整的图像,并逐渐成为计算机图像处理研究的热点。图像成像的质量对于智能安防、视频监控等场景至关重要,且在相关行业中有着十分广阔的应用前景。为了深入研究低光照图像增强,对传统低光照图像增强方法进行详细地分类阐述与分析,列举了基于深度学习的图像增强方法,对所用到的各种网络以及所解决的问题进行了详细的梳理,并将所提到的方法进行了细致的对比。又对数据集进行了细致的分析和研究,并对一些常用的评价指标进行了简单梳理。对所述内容做出总结以及指出了当前研究中存在的困难,并指出了未来的研究目标。
彭大鑫, 甄彤, 李智慧. 低光照图像增强研究方法综述[J]. 计算机工程与应用, 2023, 59(18): 14-27.
PENG Daxin, ZHEN Tong, LI Zhihui. Survey of Research Methods for Low Light Image Enhancement[J]. Computer Engineering and Applications, 2023, 59(18): 14-27.
[1] ZHANG Z,ZHENG H,HONG R,et al.Deep color consistent network for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:1899-1908. [2] 祖佳贞,周永霞,陈乐.结合注意力的双分支残差低光照图像增强[J].计算机应用,2023,43(4):1240-1247. ZU J Z,ZHOU Y X,CHEN L.Dual-branch residual low-light image enhancement combined with attention[J].Journal of Computer Applications,2023,43(4):1240-1247. [3] KANDULA P,SUIN M,RAJAGOPALAN A N.Illumination-adaptive unpaired low-light enhance-ment[J].IEEE Transactions on Circuits and Systems for Video Technology,2023,33(8):3726-3736. [4] 赵军辉,吴玉峰,胡坤融,等.基于Lab色彩空间和色调映射的彩色图像增强算法[J].计算机科学,2018,45(2):297-300. ZHAO J H,WU Y F,HU K R,et al.Color image enhancement algorithm based on lab color space and tone mapping[J].Computer Science,2018,45(2):297-300. [5] 曹红燕,刘长明,沈小林,等.基于自适应阈值和局部色调映射的低照度图像处理[J].激光与光电子学进展,2021,58(4):227-234. CAO H Y,LIU C M,SHEN X L,et al.Low illumination image processing based on adaptive threshold and local tone mapping[J].Laser & Optoelectronics Progress,2021,58(4):227-234. [6] 庞泽邦,芦碧波,谷亚楠,等.基于交叉分解的高动态范围图像色调映射算法[J].激光与光电子学进展,2021,58(14):296-303. PANG Z B,LU B B,GU Y N,et al.Crossing decomposition based tone mapping algorithm for high dynamic range image[J].Laser & Optoelectronics Progress,2021,58(14):296-303. [7] 朱世松,秦嬴,郑艳梅,等.色度亮度协同滤波的色调映射算法[J].液晶与显示,2022,37(1):77-85. ZHU S S,QIN Y,ZHENG Y M,et al.Tone mapping algorithm with chromaticity brightness collaborative filtering[J].Chinese Journal of Liquid Crystals and Displays,2022,37(1):77-85. [8] 郭永坤,朱彦陈,刘莉萍,等.空频域图像增强方法研究综述[J].计算机工程与应用,2022,58(11):23-32. GUO Y K,ZHU Y C,LIU L P,et al.Research review of space-frequency domain image enhancement methods[J].Computer Engineering and Applications,2022,58(11):23-32. [9] 江巨浪,刘国明,朱柱,等.基于快速模糊聚类的动态多直方图均衡化算法[J].电子学报,2022,50(1):167-176. JIANG J L,LIU G M,ZHU Z,et al.Dynamic multi-histogram equalization based on fast fuzzy clustering[J].Acta Electronica Sinica,2022,50(1):167-176. [10] 王利娟,常霞,任旺.基于加权直方图均衡化彩色图像增强仿真[J].计算机仿真,2021,38(12):126-131. WANG L J,CHANG X,REN W.Color image enhancement simulation based on weighted histogram equalization[J].Computer Simulation,2021,38(12):126-131. [11] 杨嘉能,李华,田宸玮,等.基于自适应校正的动态直方图均衡算法[J].计算机工程与设计,2021,42(5):1264-1270. YANG J N,LI H,TIAN C W,et al.Adaptive correction based dynamic histogram equalization[J].Computer Engineering and Design,2021,42(5):1264-1270. [12] 康利娟,陈先桥.基于多级直方图形状分割的图像对比度增强技术[J].计算机应用与软件,2022,39(3):207-212. KANG L J,CHEN X Q.Image contrast enhancement technology based on multi-level histogram shape segmentation[J].Computer Applications and Software,2022,39(3):207-212. [13] JEBADASS J R,BALASUBRAMANIAM P.Low contrast enhancement technique for color images using interval-valued intuitionistic fuzzy sets with contrast limited adaptive histogram equalization[J].Soft Computing,2022,26(10):4949-4960. [14] 侯利霞,聂丰英,万里勇.多尺度自适应Gamma矫正的低照图像增强[J].云南大学学报(自然科学版),2023,45(1):57-66. HOU L X,NIE F Y,WAN L Y.Low illumination image enhancement based on multi-scale adaptive gamma correction[J].Journal of Yunnan University(Natural Sciences Edition),2023,45(1):57-66. [15] 杨先凤,李小兰,贵红军.改进的自适应伽马变换图像增强算法仿真[J].计算机仿真,2020,37(5):241-245. YANG X F,LI X L,GUI H J.Image enhancement algorithm simulation based on improved adaptive Gamma transformation[J].Computer Simulation,2020,37(5):241-245. [16] DONG X,WANG G,PANG Y,et al.Fast efficient algorithm for enhancement of low lighting video[C]//IEEE International Conference on Multimedia and Expo,2010:37-53. [17] 刘峰,王信佳,于波,等.基于暗原色先验的低照度视频增强算法[J].计算机系统应用,2019,28(6):165-171. LIU F,WANG X J,YU B,et al.Low lighting video enhancement algorithm based on dark channel prior[J].Computer Systems & Applications,2019,28(6):165-171. [18] 王硕,陈金玉.自适应校正透射率的暗通道先验去雾算法[J].计算机工程与应用,2021,57(13):207-211. WANG S,CHEN J Y.Dark channel prior defogging algorithm for adaptive correction transmittance[J].Computer Engineering and Applications,2021,57(13):207-211. [19] LI D,SHI H,WANG H,et al.Image enhancement method based on dark channel prior[C]//2022 International Conference on Computer Engineering and Artificial Intelligence(ICCEAI),2022:200-204. [20] LAND E H,MCCANN J J.Lightness and retinex theory[J].Journal of the Optical Society of America,1971,61(1):1-11. [21] FUNT B V,CIUREA F,MCCANN J J.Retinex in Matlab[J].Journal of Electronic Imaging,2000,13(1):112-121. [22] JOBSON D J,RAHMAN Z,WOODEL G A.Properties and performance of a center/surround retinex[J].IEEE Transactions on Image Processing,1997,6(3):451-462. [23] JOBSON D J,RAHMAN Z,WOODELL G A.A multiscale retinex for bridging the gap between color images and the human observation of scenes[J].IEEE Transactions on Image processing,1997,6(7):965-976. [24] RAHMAN Z,JOBSON D J,WOODELL G A.Retinex processing for automatic image enhancement[J].Journal of Electronic Imaging,2004,13(1):100-110. [25] 常戬,刘鑫姝.空间转换与自适应灰度校正的低照度图像增强[J].计算机工程,2023,49(6):193-200. CHANG J,LIU X S.Low illumination image enhancement with spatial transformation and adaptive gray correction[J].Computer Engineering,2023,49(6):193-200. [26] 苏康友,王晓刚,柳革命.改进Retinex算法的光照不均匀图像增强研究[J].激光杂志,2022,43(9):103-108. SU K Y,WANG X G,LIU G M.Improved Retinex algorithm for image enhancement with uneven illumination[J].Laser Journal,2022,43(9):103-108. [27] 李淼,周冬明,刘琰煜,等.结合深度残差神经网络与Retinex理论的低照度图像增强[J].云南大学学报(自然科学版),2021,43(4):690-699. LI M,ZHOU D M,LIU Y Y,et al.Low-light image enhancement using deep neural network and retinex theory[J].Journal of Yunnan University(Natural Sciences Edition),2021,43(4):690-699. [28] PAN X,LI C,PAN Z,et al.Low-light image enhancement method based on retinex theory by improving illumination map[J].Applied Sciences,2022,12(10):5257. [29] YANG J,WANG J,DONG L L,et al.Optimization algorithm for low light image enhancement based on Retinex theory[J].IET Image Processing,2022,17(2):505-517. [30] MA Q,WANG Y,ZENG T.Retinex-based variational framework for low-light image enhancement and denoising[J].IEEE Transactions on Multimedia,2022:1-9. [31] LIN Y H,LU Y C.Low-light enhancement using a plug-and-play retinex model with shrink-age mapping for illumination estimation[J].IEEE Transactions on Image Processing,2022,31:4897-4908. [32] 王殿伟,邢质斌,韩鹏飞,等.基于模拟多曝光融合的低照度全景图像增强[J].光学精密工程,2021,29(2):349-362. WANG D W,XING Z B,HAN P F,et al.Low illumination panoramic image enhancement algorithm based on simulated multi-exposure fusion[J].Optics and Precision Engineering,2021,29(2):349-362. [33] RAO Y,LIN W Y,CHEN L.Image-based fusion for video enhancement of night-time surveillance[J].Optical Engineering,2010,49(12):120501. [34] 翟海祥,何嘉奇,王正家,等.改进Retinex与多图像融合算法用于低照度图像增强[J].红外技术,2021,43(10):987-993. ZHAI H X,HE J Q,WANG Z J,et al.Improved Retinex and multi-image fusion algorithm for low illumination image enhancement[J].Infrared Technology,2021,43(10):987-993. [35] UEDA Y,KOGA T,SUETAKE N.Fusion-based backlit image enhancement using multiple stype transformations for convex combination coefficients[C]//2022 IEEE International Conference on Image Processing(ICIP),2022:2971-2975. [36] ZHANG Y,ZHANG J,GUO X.Kindling the darkness:a practical low-light image enhancer[C]//Proceedings of the 27th ACM International Conference on Multimedia,2019:1632-1640. [37] ZHANG Y,GUO X,MA J,et al.Beyond brightening low-light images[J].International Journal of Computer Vision,2021,129(4):1013-1037. [38] WANG Y,WAN R,YANG W,et al.Low-light image enhancement with normalizing flow[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2022:2604-2612. [39] JIANG K,WANG Z Y,WANG Z,et al.Degrade is upgrade:learning degradation for low-light image enhancement[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2022:1078-1086. [40] XU K,CHEN H,TAN X,et al.HFMNet:hierarchical feature mining network for low-light image enhancement[J].IEEE Transactions on Instrumentation and Measurement,2022,71. [41] LU Y,GUO Y,LIU R W,et al.MTRBNet:multi-branch topology residual block-based network for low-light enhancement[J].IEEE Signal Processing Letters,2022,29:1127-1131. [42] ZHUANG Y,ZHENG Z,LYU C.DPFNet:a dual-branch dilated network with phase-aware fourier convolution for low-light image enhancement[J].arXiv:2209.07937,2022. [43] FAN G,FAN B,GAN M,et al.Multiscale low-light image enhancement network with illumination constraint[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(11):7403-7417. [44] GAO S H,CHENG M M,ZHAO K,et al.Res-2-Net:a new multi-scale backbone architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):652-662. [45] WU W,WENG J,ZHANG P,et al.URetinex-Net:retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:5901-5910. [46] LU K,ZHANG L.TBEFN:a two-branch exposure-fusion network for low-light image enhancement[J].IEEE Transactions on Multimedia,2020,23:4093-4105. [47] LU H,GONG J,LIU Z,et al.FDMLNet:a frequency-division and multiscale learning network for enhancing low-light image[J].Sensors,2022,22(21):8244. [48] XU K,CHEN H,XU C,et al.Structure-textureaware network for low-light image enhancement[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(8):4983-4996. [49] GARG A,PAN X W,DUNG L R.LiCENt:low-light image enhancement using the light channel of HSL[J].IEEE Access,2022,10:33547-33560. [50] CHEN J,LIAN Q,ZHANG X,et al.Hcsam-Net:multistage network with a hybrid of convolution and self-attention mechanism for low-light image enhancement[J].SSRN,2022:4237486. [51] YANG Y,HU W,HUANG S,et al.Low-light image enhancement network based on multi-stream information supplement[J].Multidimensional Systems and Signal Processing,2022,33:711-723. [52] JIN Y,YANG W,TAN R T.Unsupervised night image enhancement:when layer decomposition meets light-effects suppression[J].arXiv:2207.10564,2022. [53] GUO C,Li C,GUO J,et al.Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1780-1789. [54] LI C,GUO C,LOY C C.Learning to enhance low-light image via zero-reference deep curve estimation[J].arXiv:2103.00860,2021. [55] JIANG Y,GONG X,LIU D,et al.Enlightengan:deep light enhancement without paired supervision[J].IEEE Transactions on Image Processing,2021,30:2340-2349. [56] FU Y,HONG Y,CHEN L,et al.LE-GAN:unsupervised low-light image enhancement networkusing attention module and identity invariant loss[J].Knowledge-Based Systems,2022,240:108010. [57] NI Z,YANG W,WANG H,et al.Cycle-interactive generative adversarial network for robust unsupervised low-light enhancement[C]//Proceedings of the 30th ACM International Conference on Multimedia,2022:1484-1492. [58] WANG R,JIANG B,YANG C,et al.MAGAN:unsupervised low-light image enhancement guided by mixed-attention[J].Big Data Mining and Analytics,2022,5(2):110-119. [59] QIAO J,WANG X,CHEN J,et al.Low-light image enhancement with an anti-attention block based generative adversarial network[J].Electronics,2022,11(10):1627. [60] XU W,CHEN X,GUO H,et al.Unsupervised image restoration with quality-task-perception loss[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(9):5736-5747. [61] JIANG Q,MAO Y,CONG R,et al.Unsupervised decomposition and correction network for low-light image enhancement[J].IEEE Transactionson Intelligent Transportation Systems,2022,23(10)19440-19455. [62] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2223-2232. [63] BHATTACHARYA J,MODI S,GREGORAT L,et al.D2BGAN:a dark to bright image conversion model for quality enhancement and analysis tasks without paired supervision[J].IEEE Access,2022,10:57942-57961. [64] WEI C,WANG W,YANG W,et al.Deep retinex decomposition for low-light enhancement[J].arXiv:1808.04560,2018. [65] CAI J,GU S,ZHANG L.Learning a deep single image contrast enhancer from multi-exposure images[J].IEEE Transactions on Image Processing,2018,27(4):2049-2062. [66] BYCHKOVSKY V,PARIS S,CHAN E,et al.Learning photographic global tonal adjustment with a database of input/output image pairs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2011:97-104. [67] CHEN C,CHEN Q,XU J,et al.Learning to see in the dark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3291-3300. [68] CHEN C,CHEN Q,DO M N,et al.Seeing motion in the dark[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:3185-3194. [69] LOH Y P,CHAN C S.Getting to know low-light images with the exclusively dark dataset[J].Computer Vision and Image Understanding,2019,178:30-42. [70] KALANTARI N K,RAMAMOORTHI R.Deep high dynamic range imaging of dynamic scenes[J].ACM Transactions on Graphics,2017,36(4):1-12. [71] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [72] LIU J J,HOU Q,CHENG M M,et al.Improving convolutional networks with self-calibrated convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10096-10105. [73] LIU C,ZOPH B,NEUMANN M,et al.Progressive neural architecture search[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:19-34. [74] LIU C,CHEN L C,SCHROFF F,et al.Auto-deeplab:hierarchical neural architecture search for semantic image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Visionand Pattern Recognition,2019:82-92. [75] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020. [76] CHEN H,WANG Y,GUO T,et al.Pretrained image processing transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:12299-12310. [77] SHEN N,ZHOU B,XIE J,et al.Low-light image enhancement via transformer-based network[C]//2022 4th International Conference on Image,Video and Signal Processing,2022:41-47. [78] YANG S,ZHOU D,CAO J,et al.Rethinking low-light enhancement via Transformer-GAN[J].IEEE Signal Processing Letters,2022,29:1082-1086. [79] KHAN S,NASEER M,HAYAT M,et al.Transformers in vision:a survey[J].ACM Computing Surveys(CSUR),2022,54(10s):1-41. [80] 刘文婷,卢新明.基于计算机视觉的Transformer研究进展[J].计算机工程与应用,2022,58(6):1-16. LIU W T,LU X M.Research progress of Transformer based on computer vision[J].Computer Engineering and Applications,2022,58(6):1-16. [81] FANG Y,ZHU H,ZENG Y,et al.Perceptual quality assessment of smartphone photography[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:3677-3686. [82] TALEBI H,MILANFAR P.NIMA:neural image assessment[J].IEEE Transactions on Image Processing,2018,27(8):3998-4011. [83] HYUN K T,MU L K,SCHOLKOPF B,et al.Online video deblurring via dynamic temporal blending network[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:4038-4047. [84] EHRET T,DAVY A,MOREL J M,et al.Model-blind video denoising via frame-to-frame training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:11369-11378. [85] CHAN K C K,WANG X,YU K,et al.BasicVSR:the search for essential components in video super-resolution and beyond[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:4947-4956. [86] WANG X,YU K,DONG C,et al.Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:606-615. [87] CHAN K C K,WANG X,XU X,et al.Glean:generative latent bank for large-factor image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:14245-14254. [88] LI X,CHEN C,ZHOU S,et al.Blind face restoration via deep multi-scale component dictionaries[C]//European Conference on Computer Vision.Cham:Springer,2020:399-415. [89] LIANG D,LI L,WEI M,et al.Semantically contrastive learning for low-light image enhancement[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2022:1555-1563. |
[1] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[2] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[3] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[4] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[5] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[6] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[7] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[8] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[9] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[10] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[11] | 李卓容, 唐云祁. 基于深度学习的多模态生物特征融合模型[J]. 计算机工程与应用, 2023, 59(7): 180-189. |
[12] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[13] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
[14] | 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. |
[15] | 蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||