计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (11): 1-15.DOI: 10.3778/j.issn.1002-8331.2209-0312
杨锋,丁之桐,邢蒙蒙,丁波
出版日期:
2023-06-01
发布日期:
2023-06-01
YANG Feng, DING Zhitong, XING Mengmeng, DING Bo
Online:
2023-06-01
Published:
2023-06-01
摘要: 目标检测是当下计算机视觉领域的研究热点,随着深度学习的发展,基于深度学习的目标检测算法的应用越来越多,性能也不断被提升,通过总结目标检测过程中遇到的常见难题以及相应的改进方法,梳理了基于深度学习的目标检测方法的最新研究进展,重点针对基于深度学习目标检测算法的两大类型进行综述。此外还从注意力机制、轻量型网络、多尺度检测等方面对目标检测算法的最新改进思路进行总结梳理。针对当前目标检测领域存在的问题,对其未来的发展趋势进行展望,并提出可行的解决方案,以期为该领域后续的研究工作提供可借鉴的思路和方向。
杨锋, 丁之桐, 邢蒙蒙, 丁波. 深度学习的目标检测算法改进综述[J]. 计算机工程与应用, 2023, 59(11): 1-15.
YANG Feng, DING Zhitong, XING Mengmeng, DING Bo. Review of Object Detection Algorithm Improvement in Deep Learning[J]. Computer Engineering and Applications, 2023, 59(11): 1-15.
[1] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Trans Pattern Anal Mach Intell,2015,39(6):1137-1149. [2] 罗会兰,陈鸿坤.基于深度学习的目标检测研究综述[J].电子学报,2020,48(6):1230-1239. LUO H L,CHEN H K.Survey of object detection based on deep learning[J].Acta Electronica Sinica,2020,48(6):1230-1239. [3] 许德刚,王露,李凡.深度学习的典型目标检测算法研究综述[J].计算机工程与应用,2021,57(8):10-25. XU D G,WANG L,LI F.Review of typical object detection algorithms for deep learning[J].Computer Engineering and Applications,2021,57(8):10-25. [4] FEI-FEI L,FERGUS R,PERONA P.Learning generative visual models from few training examples:an incremental Bayesian approach tested on 101 object categories[C]//2004 Conference on Computer Vision and Pattern Recog-nition Workshop,2004. [5] GRIFFIN G,HOLUB A,PERONA P.Caltech-256 object category dataset[R].California Institute of Technology,2007. [6] EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338. [7] EVERINGHAM M,ESLAMI S M A,VAN GOOL L,et al.The pascal visual object classes challenge:a retrospective[J].International Journal of Computer Vision,2015,111(1):98-136. [8] RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [9] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [10] KRASIN I,DUERIG T,ALLDRIN N,et al.OpenImages:a public dataset for large-scale multi-label and multiclass image classification[EB/OL].[2020-05-10].https://github.Com/openimages. [11] XIA G S,BAI X,DING J,et al.DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3974-3983. [12] ZHU Z,LIANG D,ZHANG S,et al.Traffic-sign detection and classification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2110-2118 [13] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? the kittivision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition,2012:3354-3361. [14] YU X,GONG Y,JIANG N,et al.Scale match for tiny person detection[C]//2020 IEEE Winter Conference on Applications of Computer Vision(WACV),2020. [15] GHOJAVAND K,DERAKHTIAN M,BIGUESH M.Rao-based detectors for adaptive target detection in the presence of signal-dependent interference[J].IEEE Transactions on Signal Processing,2020,68(99):1662-1672. [16] ZHANG H,ZHOU Z.Small target detection based on automatic ROI extraction and local directional gray & entropy contrast map[J].Infrared Physics & Technology,2020,107(4):103290. [17] LAN T Y,BENDORY T,BOUMAL N,et al.Multi-target detection with an arbitrary spacing distribution[J].IEEE Transactions on Signal Processing,2020,68:1589-1601. [18] DU J,LU H,HU M,et al.CNN-based infrared dim small target detection algorithm using target-oriented shallow deep features and effective small anchor[J].IET Image Processing,2021,15:1-15. [19] ZHAO T,WU X Q.Pyramid feature attention network for saliency detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition,Long Beach,Jun 16-20,2019.Washington:IEEE Computer Society,2019:3085-3094. [20] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[C]//Neural Information Processing Systems,2016:379-387. [21] ZHOU T,YU Z,CAO Y,et al.Study on an infrared multi-target detection method based on the pseudo-two-stage model[J].Infrared Physics & Technology,2021,118:103883. [22] ZHANG S,WEN L,BIAN X,et al.Single-shot refinement neural network for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4203-4212. [23] XIAO Y,TIAN Z,YU J,et al.A review of object detection based on deep learning[J].Multimedia Tools and Applications,2020,79(33):23729-23791. [24] TAN M,PANG R,LE Q V.EfficientDet:scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10781-10790. [25] 曹磊,王强,史润佳,等.基于改进RPN的Faster R-CNN网络SAR图像车辆目标检测方法[J].东南大学学报(自然科学版),2021,51(1):87-91. CAO L,WANG Q,SHI R J,et al.Vehicle target detection method based on improved RPN in Faster R-CNN network SAR image[J].Journal of Southeast University(Natural Science Edition),2021,51(1):87-91. [26] 王忠塬.基于改进Faster R-CNN的小目标检测技术研究[D].长春:长春理工大学,2021. WANG Z Y.Research on small target detection technology based on improved Faster R-CNN[D].Changchun:Changchun University of Technology,2021. [27] BODLA N,SINGH B,CHELLAPPA R,et al.Soft NMS—improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5561-5569. [28] HE Y,ZHU C,WANG J,et al.Bounding box regression with uncertainty for accurate object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:2888-2897. [29] CHEN C,HE C,HU C,et al.A deep neural network based on an attention mechanism for sar ship detection in multiscale and complex scenarios[J].IEEE Access,2019,7:104848-104863. [30] LIU S,HUANG D,WANG Y.Adaptive NMS:refining pedestrian detection in a crowd[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:6459-6468. [31] BOLYA D,ZHOU C,XIAO F,et al.YOLACT:real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9157-9166. [32] ZHENG Z,WANG P,REN D,et al.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].IEEE Transactions on Cybernetics,2022,52:8574-8586. [33] 戴海能,茅耀斌.一种改进的基于R-FCN模型的人脸检测算法[J].计算机与现代化,2018(8):12-15. DAI H N,MAO Y B.An improved face detection algothrim based on R-FCN[J].Computer and Moderni-zation,2018(8):12-15. [34] 赵振兵,崔雅萍,戚银城,等.基于改进的R-FCN航拍巡线图像中的绝缘子检测方法[J].计算机科学,2019,46(3):159-163. ZHAO Z B,CUI Y P,QI Y C,et al.Detection method of insulator in aerial inspection image based on modified R-FCN[J].Computer Science,2019,46(3):159-163. [35] HE D,QIU Y,MIAO J,et al.Improved Mask R-CNN for obstacle detection of rail transit[J].Measurement,2022(190):110728. [36] 廖延娜,豆丹阳.基于Mask RCNN的桥梁裂缝检测方法设计及研究[J].应用光学,2022,43(1):100-105. LIAO Y N,DOU D Y.Design and research of bridge cracks detection method based on Mask RCNN[J].Journal of Applied Optics,2022,43(1):100-105. [37] ADAMDAD.Keras-YOLOv3-MobileNet[Z].2019. [38] GONG J,ZHAO J,LI F,et al.Vehicle detection in thermal images with an improved YOLOv3-tiny[C]//2020 IEEE International Conference on Power,Intelligent Computing and Systems(ICPICS),2020:253-256. [39] LI Y,Lü C.SS-YOLO:an object detection algorithm based on YOLOv3 and ShuffleNet[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference(ITNEC),2020:769-772. [40] 王波,冯旭鹏,刘利军,等.基于改进YOLO算法的肺部CT图像中结节检测研究[J].北京生物医学工程,2020,39(6):7-13. WANG B,FENG X P,LIU L J,et al.Study on nodule detection in lung CT images based on improved YOLO algorithm[J].Beijing Biomedical Engineering,2020,39(6):7-13. [41] ZHANG T,ZHANG X.High-speed ship detection in SAR images based on a grid convolutional neural network[J].Remote Sensing,2019,11(10):1206. [42] 刘肯,何姣姣,张永平,等.改进YOLO的车辆检测算法[J].现代电子技术,2019,42(13):47-50. LIU K,HE J J,ZHANG Y P,et al.Improved YOLO vehicle detection algorithm[J].Modern Electronics Technique,2019,42(13):47-50. [43] CHANG Y L,ANAGAW A,CHANG L,et al.Ship detection based on YOLOv2 for SAR imagery[J].Remote Sensing,2019,11(7):786. [44] 李珣,时斌斌,刘洋,等.基于改进YOLOv2模型的多目标识别方法[J].激光与光电子学进展,2020,57(10):113-122. LI X,SHI B B,LIU Y,et al.Multi-target recognition method based on improved YOLOv2 model[J].Laser & Optoelectronics Progress,2020,57(10):113-122. [45] XU C J,YE Q,LIU J X,et al.Research on vehicle detection based on YOLOv3[C]//2nd International Conference on Information Technology and Computer Application(ITCA),2020:433-436. [46] WANG S.Research towards YOLO-series algorithms:comparison and analysis of object detection models for realtime UAV applications[J].Journal of Physics:Conference Series,2021,1948(1):012021. [47] 李航,朱明.基于深度卷积神经网络的小目标检测算法[J].计算机工程与科学,2020,42(4):649-657. LI H,ZHU M.A small object detection algorithm based on deep convolutional neural network[J].Computer Engineering and Science,2020,42(4):649-657. [48] ZHANG Y,SONG C,ZHANG D.Deep learning-based object detection improvement for tomato disease[J].IEEE Access,2020,8:56607-56614. [49] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:12993-13000. [50] ZHU G,WEI Z,LIN F.An object detection method combining multi-level feature fusion and region channel attention[J].IEEE Access,2022,9:25101-25109. [51] 陈旭,彭冬亮,谷雨.基于改进YOLOv5s的无人机图像实时目标检测[J].光电工程,2022,49(3):69-81. CHEN X,PENG D L,GU Y.Real time target detection of UAV image based on improved YOLOv5s[J].Opto-Electronic Engineering,2022,49(3):69-81. [52] WANG C,WANG H,YU F,et al.A high-precision fast smoky vehicle detection method based on improved YOLOv5 network[C]//IEEE International Conference on Artificial Intelligence and Industrial Design(AIID),2022:255-259. [53] 乔延婷,陈万培,张涛.基于SSD的轻量级车辆检测网络[J].无线电工程,2020,50(11):926-931. QIAO Y T,CHEN W P,ZHANG T.A lightweight vehicle detection network based on SSD[J].Radio Engineering,2020,50(11):926-931. [54] 宋世奇,李旭,祝雪芬.基于改进SSD的航拍城市道路车辆检测方法[J].传感器与微系统,2021,40(1):114-117. SONG S Q,LI X,ZHU X F,et al.Urban road vehicle detetion method by aerial photography based on improved SSD[J].Transducer and Miscrosystem Technologies,2021,40(1):114-117. [55] 鞠默然,罗海波,刘广琦,等.采用空间注意力机制的红外弱小目标检测网络[J].光学精密工程,2021,29(4):843-853. JU M R,LUO H B,LIU G Q,et al.Infrared dim and small target detection network based on spatial attention mechanism[J].Optics and Precision Engineering,2021,29(4):843-853. [56] 陈静怡.基于多任务学习的乳腺医学图像目标检测算法研究[D].哈尔滨:哈尔滨工程大学,2021. CHEN J Y.Research on target detection algorithm of breast medical image based on multi task learning[D].Harbin:Harbin Engineering University,2021. [57] SHEN Z Q,LIU Z,LI J G,et al.DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,Venice,Oct 22-29,2017.Washington:IEEE Computer Society,2017:1937-1945. [58] 奚琦,张正道,彭力.基于改进密集网络与二次回归的小目标检测算法[J].计算机工程,2021,47(4):241-247. XI Q,ZHANG Z D,PENG L.Small object detection algorithm based on improved dense network and quadratic regression[J].Computer Engineering,2021,47(4):241-247. [59] LU X,KANG X,NISHIDE S,et al.Object detection based on SSD-ResNet[C]//2019 IEEE 6th International Conference on Cloud Computing and Intelligence Systems(CCIS),2019:89-92. [60] 郑儒楠,仇晓兰.结合置信度的多通道星载SAR在轨舰船低虚警快速检测[J].遥感学报,2022,26(3):516-527. ZHENG R N,QIU X L.Fast detection method for low false alarm of multi-channel spaceborne SAR image combined with confidence calculation[J].Journal of Remote Sensing,2022,26(3):516-527. [61] 蒋晨,钱永明,姚兴田等.基于可变形卷积改进SSD算法的目标检测方法[J].电子测量技术,2022,45(16):116-122. JIANG C,QIAN Y M,YAO X T,et al.Target detection method based on deformable convolution improved SSD algorithm[J].Electronic Measurement Technology,2022,45(16):116-122. [62] LIU S,HUANG D,WANG Y H.Receptive field block net for accurate and fast object detection[C]//Proceedings of ECCV 2018,2018:404-419. [63] 陈家栋,雷斌.基于改进SSD轻量化的交通路口目标检测[J].传感器与微系统,2022,41(10):117-121. CHEN J D,LEI B.Traffic intersection target detection based on improved SSD lightweight[J].Sensors and Microsystems,2022,41(10):117-121. [64] 刘鑫,黄进,杨涛,等.改进CenterNet的无人机小目标捕获检测方法[J].计算机工程与应用,2022,58(14):96-104. LIU X,HUANG J,YANG T,et al.Improved small object detection for UAV acquisition based on CenterNet[J].Computer Engineering and Applications,2022,58(14):96-104. [65] PAN H,CHEN G,JIANG J.Adaptively dense feature pyramid network for object detection[J].IEEE Access,2019,7:81132-81144. [66] 张海涛,张梦.引入通道注意力机制的SSD目标检测算法[J].计算机工程与应用,2020,46(8):264-270. ZHANG H T,ZHANG M.SSD target detection algorithm with channel attention mechanism[J].Computer Engineering and Applications,2020,46(8):264-270. [67] 陈灏然,彭力,李文涛,等.加权网络下的小目标检测算法[J].计算机科学与探索,2022,16(9):2143-2150. CHEN H R,PENG L,LI W T,et al.Small object detection algorithm based on weighted network[J].Journal of Frontiers of Computer Science and Technology,2022,16(9):2143-2150. [68] 李文涛,彭力.多尺度通道注意力融合网络的小目标检测算法[J].计算机科学与探索,2021,15(12):2390-2400. LI W T,PENG L.Small objects detection algorithm with multi-scale channel attention fusion network[J].Journal of Frontiers of Computer Science and Technology,2021,15(12):2390-2400. [69] LIN T,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327. [70] HU H,BAI S,LI A,et al.Dense relation distillation with context-aware aggregation for few shot object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2021:10185-10194. [71] SUN B,LI B,CAI S,et al.FSCE:few-shot object detection via contrastive proposal encoding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2021:7352-7362. [72] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[J].arXiv:1602. 07360,2016. [73] 薛远亮,金国栋,侯笑晗,等.融合注意力机制与改进SSD算法的SAR舰船目标检测方法[J].计算机应用研究,2022,39(1):35-41. XUE Y L,JIN G D,HOU X H,et al.SAR ship target detection method combining attention mechanism and improved SSD algorithm[J].Computer Application Research,2022,39(1):35-41. [74] KIM K H,HONG S,ROH B,et al.PVANET:deep but lightweight neural networks for real-time object detection[J].arXiv:1608.08021,2016. [75] XIE S,ZHENG H,LIU C,et al.SNAS:stochastic neural architecture search[J].arXiv:1812.09926,2018. [76] XING M.SAR target detection based on improved SSD with saliency map and residual network[J].Remote Sensing,2022,14:180. [77] ZHAO Q,SHENG T,Wang Y,et al.M2Det:a single-shot object detector based on multi-level feature pyramid network[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):9259-9266. [78] ZHANG S,CHI C,YAO Y,et al.Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:9759-9768. [79] DAI X,YUAN X,WEI X.Data augmentation for thermal infrared object detection with cascade pyramid generative adversarial network[J].Applied Intelligence,2021,52(6):1-15. [80] YANG Y,MA C,FAN B,et al.Photonics-based simultaneous angle of arrival and frequency measurement system with multiple-target detection capability[J].Journal of Lightwave Technology,2021,39(24):7656-7663. [81] ZHANG S,XIE Y,WAN J,et al.WiderPerson:a diverse dataset for dense pedestrian detection in the wild[J].IEEE Transactions on Multimedia,2020,22(2):380-393. [82] SHI W,BAO S,TAN D.FFESSD:an accurate and efficient single-shot detector for target detection[J].Applied Sciences,2019,9(20):4276. |
[1] | 梅雨竹, 胡竹林, 朱欣娟. 融合双层注意力机制的群组偏好融合策略研究[J]. 计算机工程与应用, 2023, 59(9): 272-279. |
[2] | 张婷, 张兴忠, 王慧民, 杨罡, 王大伟. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336. |
[3] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[4] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[5] | 刘华玲, 陈尚辉, 乔梁, 刘雅欣. 多模态混合注意力机制的虚假新闻检测研究[J]. 计算机工程与应用, 2023, 59(9): 95-103. |
[6] | 辛苗苗, 马丽, 胡博发. 融合多粒度信息的文本分类研究[J]. 计算机工程与应用, 2023, 59(9): 104-111. |
[7] | 蔡正奕, 赵杰煜, 朱峰. 融合图像特征的单阶段点云目标检测[J]. 计算机工程与应用, 2023, 59(9): 140-149. |
[8] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[9] | 李晋荣, 吕国英, 李茹, 柴清华, 王超. 结合Hybrid Attention机制和BiLSTM-CRF的汉语否定语义表示及标注[J]. 计算机工程与应用, 2023, 59(9): 167-175. |
[10] | 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 198-206. |
[11] | 李坤亚, 欧鸥, 刘广滨, 于泽峰, 李林. 改进YOLOv5的遥感图像目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 207-214. |
[12] | 黄磊, 杨媛, 杨成煜, 杨威, 李耀华. FS-YOLOv5:轻量化红外目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 215-224. |
[13] | 李文举, 储王慧, 崔柳, 苏攀, 张干. 结合图采样和图注意力的3D目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 237-244. |
[14] | 曾曦, 辛月兰, 谢琪琦. 基于性别约束的多分支网络人脸表情识别[J]. 计算机工程与应用, 2023, 59(9): 245-254. |
[15] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||