计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (10): 1-21.DOI: 10.3778/j.issn.1002-8331.2209-0345
赵宇博,张丽萍,闫盛,侯敏,高茂
出版日期:
2023-05-15
发布日期:
2023-05-15
ZHAO Yubo, ZHANG Liping, YAN Sheng, HOU Min, GAO Mao
Online:
2023-05-15
Published:
2023-05-15
摘要: 学科知识图谱是依赖大数据、人工智能等技术构建的支持教学活动的重要工具,作为一种学科知识语义网络,能够助力个性化学习体系的发展并促进数字教育资源新基建。对知识图谱的概念、分类等内容进行概述;总结了学科知识图谱的概念、特点、优势、内涵及其对个性化学习的支持等内容;重点梳理了学科知识图谱的构建流程:学科本体构建、学科知识抽取、学科知识融合以及学科知识加工,并介绍了学科知识图谱在个性化学习情境中的应用及其面临的挑战;展望了学科知识图谱以及个性化学习的未来趋势,为教育资源的组织方式及个性化学习的创新发展提供借鉴和启示。
赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 个性化学习中学科知识图谱构建与应用综述[J]. 计算机工程与应用, 2023, 59(10): 1-21.
ZHAO Yubo, ZHANG Liping, YAN Sheng, HOU Min, GAO Mao. Construction and Application of Discipline Knowledge Graph in Personalized Learning[J]. Computer Engineering and Applications, 2023, 59(10): 1-21.
[1] BIZER C,HEATH T,BERNERS-LEE T.Linked data:the story so far[M]//Semantic services,interoperability and web applications:emerging concepts.[S.l.]:IGI Global,2011:205-227. [2] 马昂,于艳华,杨胜利,等.基于强化学习的知识图谱综述[J].计算机研究与发展,2022,59(8):1694-1722. MA A,YU Y H,YANG S L,et al.A survey of knowledge graph based on reinforcement learning[J].Journal of Computer Research and Development,2022,59(8):1694-1722. [3] 李振,周东岱,刘娜,等.人工智能应用背景下的教育人工智能研究[J].现代教育技术,2018,28(9):19-25. LI Z,ZHOU D D,LIU N,et al.Research on the artificial intelligence in education under the background of artificial intelligence application[J].Modern Educational Technology,2018,28(9):19-25. [4] 国务院.国务院关于印发新一代人工智能发展规划的通知[Z].中华人民共和国国务院公报,2017(22):7-21. PRC.Notice of the state council on issuing the development plan on the new generation of artificial intelligence[Z].Gazette of the State Council of the People’s Republic of China,2017(22):7-21. [5] XIE H,CHU H C,HWANG G J,et al.Trends and development in technology-enhanced adaptive/personalized learning:a systematic review of journal publications from 2007 to 2017[J].Computers & Education,2019,140:103599. [6] MALAISE Y,SIGNER B.Personalised learning environments based on knowledge graphs and the zone of proximal development[C]//Proceedings of the 14th International Conference on Computer Supported Education,2022:199-206. [7] JI S,PAN S,CAMBRIA E,et al.A survey on knowledge graphs:representation,acquisition,and applications[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(2):494-514. [8] 付雷杰,曹岩,白瑀,等.国内垂直领域知识图谱发展现状与展望[J].计算机应用研究,2021,38(11):3201-3214. FU L J,CAO Y,BAI Y,et al.Development status and prospect of vertical domain knowledge graph in China[J].Application Research of Computers,2021,38(11):3201-3214. [9] 张吉祥,张祥森,武长旭,等.知识图谱构建技术综述[J].计算机工程,2022,48(3):23-37. ZHANG J X,ZHANG X S,WU C X,et al.Survey of knowledge graph construction techniques[J].Computer Engineering,2022,48(3):23-27. [10] AUER S,BIZER C,KOBILAROV G,et al.DBpedia:a nucleus for a web of open data[M]//The semantic web.Berlin,Heidelberg:Springer,2007:722-735. [11] SUCHANEK F M,KASNECI G,WEIKUM G.YAGO:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web,2007:697-706. [12] BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,2008:1247-1250. [13] WU W,LI H,WANG H,et al.Probase:a probabilistic taxonomy for text understanding[C]//Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,2012:481-492. [14] 搜狗百科.搜狗知立方[EB/OL].(2022-06-09)[2022-11-29].https://baike.sogou.com/v66616234.html. Sougou Baike.Sogou known cube[EB/OL].(2022-06-09)[2022-11-29].https://baike.sogou.com/v66616234.html. [15] 百度百科.百度知心[EB/OL].(2021-12-01)[2022-11-29].https://baike.baidu.com/item/%E7%99%BE%E5%BA%A6%E7%9F%A5%E5%BF%83/12015195?fr=aladdin. Baidu Baike.Baidu’s bosom[EB/OL].(2021-12-01)[2022-11-29].https://baike.baidu.com/item/%E7%99%BE%E5%BA%A6%E7%9F%A5%E5%BF%83/12015195?fr=aladdin. [16] NIU X,SUN X,WANG H,et al.Zhishi.me-weaving Chinese linking open data[C]//International Semantic Web Conference.Berlin,Heidelberg:Springer,2011:205-220. [17] XU B,XU Y,LIANG J,et al.CN-DBpedia:a never-ending Chinese knowledge extraction system[C]//International Conference on Industrial,Engineering and Other Applications of Applied Intelligent Systems.Cham:Springer,2017:428-438. [18] 阿里云.电商知识图谱[EB/OL].(2020-04-11)[2022-11-29].https://developer.aliyun.com/article/754652. Alibaba Cloud Computing Co.Ltd.E-commerce knowledge graph[EB/OL].(2020-04-11)[2022-11-29].https://developer.aliyun.com/article/754652. [19] 于彤,陈华钧,姜晓红.中医药知识工程[M].北京:科学出版社,2017. YU T,CHEN H J,JIANG X H.Knowledge engineering for traditional Chinese medicine[M].Beijing:Science Press,2017. [20] 2021全国知识图谱与语义计算大会.工业界论坛[EB/OL].(2021-01-05)[2022-11-29].http://sigkg.cn/ccks2021/?page_id=342. China Conference on Knowledge Graph and Semantic Computing.Industry forum[EB/OL].(2021-01-05)[2022-11-29].http://sigkg.cn/ccks2021/?page_id=342. [21] 刘政昊,钱宇星,衣天龙,等.知识关联视角下金融证券知识图谱构建与相关股票发现[J].数据分析与知识发现,2022,6(2):184-201. LIU Z H,QIAN Y X,YI T L,et al.Constructing knowledge graph for financial securities and discovering related stocks with knowledge association[J].Data Analysis and Knowledge Discovery,2022,6(2):184-201. [22] 汪文生,张静静.基于CiteSpace知识图谱的能源安全研究进展与展望[J].矿业科学学报,2021,6(4):497-508. WANG W S,ZHANG J J.Research progress and prospect of energy security based on citespace knowledge graph[J].Journal of Mining Science and Technology,2021,6(4):497-508. [23] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.学科分类与代码:GB/T 13745—2009[S].北京:中国标准出版社,2009. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration.Classification and code of disciplines:GB/T 13745—2009[S].Beijing:Standards Press of China,2009. [24] 林健,柯清超,黄正华,等.学科知识图谱的动态生成及其在资源智能组织中的应用[J].远程教育杂志,2022,40(4):23-34. LIN J,KE Q C,HUANG Z H,et al.Dynamic generation of subject knowledge graph and its application in resources intelligent organization[J].Journal of Distance Education,2022,40(4):23-34. [25] 李艳燕,张香玲,李新,等.面向智慧教育的学科知识图谱构建与创新应用[J].电化教育研究,2019,40(8):60-69. LI Y Y,ZHANG X L,LI X,et al.Construction and innovative application of discipline knowledge graph oriented to smart education[J].e-Education Research,2019,40(8):60-69. [26] 李龙飞,张国良.算法时代“信息茧房”效应生成机理与治理路径——基于信息生态理论视角[J].电子政务,2022(9):51-62. LI L F,ZHANG G L.Generation mechanism and treatment path of “information cocoon house” effect in the algorithmic era—from the perspective of information ecology theory[J].E-Government,2022(9):51-62. [27] 周炫余,唐祯,唐丽蓉,等.基于多源异构数据融合的初中数学知识图谱构建[J].武汉大学学报(理学版),2021,67(2):118-126. ZHOU X Y,TANG Z,TANG L R,et al.Construction of junior high school mathematics knowledge graph based on multi-source heterogeneous data fusion[J].Journal of Wuhan University(Natural Science Edition),2021,67(2):118-126. [28] 赵玲朗,范佳荣,赵一婷,等.基于知识图谱的学习者画像模型设计与应用——以“高中物理”课程为例[J].现代教育技术,2021,31(2):95-101. ZHAO L L,FAN J R,ZHAO Y T,et al.The design and application of the learners’ portrait model based on knowledge mapping—taking the “high school physics” course as an example[J].Modern Educational Technology,2021,31(2):95-101. [29] 杨云飞,穗志方.面向医学知识图谱的可视化方法设计与实现[J].中文信息学报,2022,36(2):40-48. YANG Y F,SUI Z F.Design and implementation of visualization for medical knowledge graph[J].Journal of Chinese Information Processing,2022,36(2):40-48. [30] CUI J,YU S.Fostering deeper learning in a flipped classroom:effects of knowledge graphs versus concept maps[J].British Journal of Educational Technology,2019,50(5):2308-2328. [31] BOUCHARD P.Network promises and their implications[J].RUSC Universities and Knowledge Society Journal,2011,8(1):288-302. [32] 赵学孔,徐晓东,龙世荣.协同推荐:一种个性化学习路径生成的新视角[J].中国远程教育,2017(5):24-34. ZHAO X K,XU X D,LONG S R.Collaborative recommendation:a new perspective on the generation of personalized learning path[J].Distance Education in China,2017(5):24-34. [33] 牟智佳.“人工智能+”时代的个性化学习理论重思与开解[J].远程教育杂志,2017,35(3):22-30. MOU Z J.The reconsideration and solution of personalized learning theory in the era of “artificial intelligence plus”[J].Journal of Distance Education,2017,35(3):22-30. [34] 祝智庭,贺斌.智慧教育:教育信息化的新境界[J].电化教育研究,2012,33(12):5-13. ZHU Z T,HE B.Intelligence education:a new realm of educational informationization[J].e-Education Research,2012,33(12):5-13. [35] MODRITSCHER F,WILD F.Personalized e-learning through environment design and collaborative activities[C]//LNCS 5298:HCI and Usability for Education and Work,4th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society,2008:377-390. [36] 钟启泉.为了中华民族的复兴 为了每位学生的发展[Z].基础教育课程改革纲要(试行)解读,2001. ZHONG Q Q.For the rejuvenation of the Chinese nation and the development of every student[Z].Interpretation of the Outline of Basic Education Curriculum Reform(Trial),2001. [37] 范佳荣,钟绍春.学科知识图谱研究:由知识学习走向思维发展[J].电化教育研究,2022,43(1):32-38. FAN J R,ZHONG S C.Research on subject knowledge mapping:from knowledge learning to thinking development[J].e-Education Research,2022,43(1):32-38. [38] 杨现民,余胜泉.智慧教育体系架构与关键支撑技术[J].中国电化教育,2015(1):77-84. YANG X M,YU S Q.The architecture and key support technologies of smart education[J].China Educational Technology,2015(1):77-84. [39] 高茂,张丽萍.融合多模态资源的教育知识图谱的内涵、技术与应用研究[J].计算机应用研究,2022,39(8):2257-2267. GAO M,ZHANG L P.Research on connotation,technology and application of educational knowledge graph based on multimodal resources[J].Application Research of Computers,2022,39(8):2257-2267. [40] 胡钦太,刘丽清,郑凯.工业革命4.0背景下的智慧教育新格局[J].中国电化教育,2019(3):1-8. HU Q T,LIU L Q,ZHENG K.The new structure of smart education under the background of the fourth industrial revolution[J].China Educational Technology,2019(3):1-8. [41] 李振,周东岱.教育知识图谱的概念模型与构建方法研究[J].电化教育研究,2019,40(8):78-86. LI Z,ZHOU D D.Research on conceptual model and construction method of educational knowledge graph[J].e-Education Research,2019,40(8):78-86. [42] 刘凤娟,赵蔚,姜强,等.基于知识图谱的个性化学习模型与支持机制研究[J].中国电化教育,2022(5):75-81. LIU F J,ZHAO W,JIANG Q,et al.Research on personalized learning model and support mechanism based on knowledge graph[J].China Educational Technology,2022(5):75-81. [43] 杨宗凯.个性化学习的挑战与应对[J].科学通报,2019,64(5):493-498. YANG Z K.The challenges of personalized learning and their solutions[J].Chinese Science Bulletin,2019,64(5):493-498. [44] 刘三女牙,刘盛英杰,孙建文,等.智能教育发展中的若干关键问题[J].中国远程教育(综合版),2021(4):1-7. LIU S Y,LIU S Y J,SUN J W,et al.Key issues concerning the development of intelligent education[J].Distance Education in China,2021(4):1-7. [45] STUDER R,BENJAMINS V R,FENSEL D.Knowledge engineering:principles and methods[J].Data & Knowledge Engineering,1998,25(1/2):161-197. [46] WONG W,LIU W,BENNAMOUN M.Ontology learning from text:a look back and into the future[J].ACM Computing Surveys,2012,44(4):1-36. [47] RUBIN D L,NOY N F,MUSEN M A.Protege:a tool for managing and using terminology in radiology applications[J].Journal of Digital Imaging,2007,20(1):34-46. [48] 王向前,张宝隆,李慧宗.本体研究综述[J].情报杂志,2016,35(6):163-170. WANG X Q,ZHANG B L,LI H Z.Overview of ontology research[J].Journal of Intelligence,2016,35(6):163-170. [49] SURE Y,ANGELE J,STAAB S.OntoEdit:multifaceted inferencing for ontology engineering[J].Journal on Data Semantics,2003,1:128-152. [50] 李振,周东岱,王勇.“人工智能+”视域下的教育知识图谱:内涵,技术框架与应用研究[J].远程教育杂志,2019,37(4):42-53. LI Z,ZHOU D D,WANG Y.Research of educational knowledge graph from the perspective of “artificial intelligence+”:connotation,technical framework and application[J].Journal of Distance Education,2019,37(4):42-53. [51] 童名文,牛琳,杨琳,等.课程本体自动构建技术研究[J].计算机科学,2016,43(S2):108-112. TONG M W,NIU L,YANG L,et al.Research on technique of course ontology automatically constructing[J].Computer Science,2016,34(S2):108-112. [52] FAWEI B,PAN J Z,KOLLINGBAUM M,et al.A semi-automated ontology construction for legal question answering[J].New Generation Computing,2019,37(4):453-478. [53] 高劲松,梁艳琪,王学东,等.学科知识地图的本体构建方法研究[J].情报科学,2013,31(7):72-77. GAO J S,LIANG Y Q,WANG X D,et al.Study of the ontology construction method for subject knowledge map[J].Information Science,2013,31(7):72-77. [54] 李冬梅,张扬,李东远,等.实体关系抽取方法研究综述[J].计算机研究与发展,2020,57(7):1424-1448. LI D M,ZHANG Y,LI D Y,et al.Review of entity relation extraction methods[J].Journal of Computer Research and Development,2020,57(7):1424-1448. [55] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [56] MIKOLOV T,KARAFIáT M,BURGET L,et al.Recurrent neural network based language model[C]//11th Annual Conference of the International Speech Communication Association,2010:1045-1048. [57] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [58] GRISHMAN R,SUNDHEIM B M.Message understanding conference-6:a brief history[C]//16th International Conference on Computational Linguistics,1996. [59] 赵山,罗睿,蔡志平.中文命名实体识别综述[J].计算机科学与探索,2022,16(2):296-304. ZHAO S,LUO R,CAI Z P.Survey of Chinese named entity recognition[J].Journal of Frontiers of Computer Science and Technology,2022,16(2):296-304. [60] 温秀秀,马超,高原原,等.基于标签聚类的中文重叠命名实体识别方法[J].计算机工程,2020,46(5):41-46. WEN X X,MA C,GAO Y Y,et al.Chinese overlapping named entity recognition method based on label clustering[J].Computer Engineering,2020,46(5):41-46. [61] ZHANG Y,XU J,CHEN H,et al.Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning[J].Database,2016.DOI:10.1093/database/baw049. [62] FINKEL J R,GRENAGER T,MANNING C D.Incorporating non-local information into information extraction systems by Gibbs sampling[C]//Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics,2005:363-370. [63] LAFFERTY J D,MCCALLUM A K,PEREIRA F.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//International Conference on Machine Learning,2001. [64] W?LLMER M,EYBEN F,GRAVES A,et al.Bidirectional LSTM networks for context-sensitive keyword detection in a cognitive virtual agent framework[J].Cognitive Computation,2010,2(3):180-190. [65] LUO L,YANG Z,YANG P,et al.An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J].Bioinformatics,2018,34(8):1381-1388. [66] DEVLIN J,CHANG M W,LEE K,et al.BERT:pretraining of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [67] 张毅,王爽胜,何彬,等.基于BERT的初等数学文本命名实体识别方法[J].计算机应用,2022,42(2):433-439. ZHANG Y,WANG S S,HE B,et al.Named entity recognition method of elementary mathematical text based on BERT[J].Journal of Computer Applications,2022,42(2):433-439. [68] BIRD S,KLEIN E,LOPER E.Natural language processing with Python:analyzing text with the natural language toolkit[M].Sebastopol:O’Reilly Media,Inc.,2009. [69] ZHANG C,Ré C,CAFARELLA M,et al.DeepDive:declarative knowledge base construction[J].Communications of the ACM,2017,60(5):93-102. [70] MANNING C D,SURDEANU M,BAUER J,et al.The Stanford CoreNLP natural language processing toolkit[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics:System Demonstrations,2014:55-60. [71] ZHANG W,LIU T,YIN Q,et al.Neural recovery machine for Chinese dropped pronoun[J].Frontiers of Computer Science,2019,13(5):1023-1033. [72] 谢明鸿,冉强,王红斌.基于同义词词林和规则的中文远程监督人物关系抽取方法[J].计算机工程与科学,2021,43(9):1660-1667. XIE M H,RAN Q,WANG H B.A Chinese distant supervised personal relationship extraction method based on tongyici cilin and rules[J].Computer Engineering and Science,2021,43(9):1660-1667. [73] 赵哲焕,杨志豪,孙聪,等.生物医学文献中的蛋白质关系抽取研究[J].中文信息学报,2018,32(7):82-90. ZHAO Z H,YANG Z H,SUN C,et al.Protein-protein interaction extraction from biomedical literature[J].Journal of Chinese Information Processing,2018,32(7):82-90. [74] PAN L,LI C,LI J,et al.Prerequisite relation learning for concepts in MOOCs[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2017:1447-1456. [75] 韩萌,李蔚清.基于特征增强的中文STEM课程知识的关系抽取[J].计算机应用研究,2020,37(S1):40-42. HAN M,LI W Q.Relationship extraction of Chinese stem course knowledge based on feature enhancement[J].Ap-plication Research of Computers,2020,37(S1):40-42. [76] SONG M,ZHAO J,GAO X.Research on entity relation extraction in education field based on multi-feature deep learning[C]//Proceedings of the 2020 3rd International Conference on Big Data Technologies,2020:102-106. [77] 鄂海红,张文静,肖思琪,等.深度学习实体关系抽取研究综述[J].软件学报,2019,30(6):1793-1818. E H H,ZHANG W J,XIAO S Q,et al.Survey of entity relationship extraction based on deep learning[J].Journal of Software,2019,30(6):1793-1818. [78] 杨东明,杨大为,顾航,等.面向初等数学的知识点关系提取研究[J].华东师范大学学报(自然科学版),2019(5):53-65. YANG D M,YANG D W,GU H,et al.Research on knowledge point relationship extraction for elementary mathematics[J].Journal of East China Normal University(Natural Science),2019(5):53-65. [79] SU Y,ZHANG Y.Automatic construction of subject knowledge graph based on educational big data[C]//Proceedings of the 2020 3rd International Conference on Big Data and Education,2020:30-36. [80] 徐绪堪,房道伟,蒋勋,等.知识组织中知识粒度化表示和规范化研究[J].图书情报知识,2014(6):101-106. XU X K,FANG D W,JIANG X,et al.Research on knowledge granularity representation and standardization during knowledge organization[J].Document,Informaiton & Knowledge,2014(6):101-106. [81] SHEN W,WANG J,HAN J.Entity linking with a knowledge base:issues,techniques,and solutions[J].IEEE Transactions on Knowledge and Data Engineering,2014,27(2):443-460. [82] CECCARELLI D,LUCCHESE C,ORLANDO S,et al.Dexter:an open source framework for entity linking[C]//Proceedings of the 6th International Workshop on Exploiting Semantic Annotations in Information Retrieval,2013:17-20. [83] FERRAGINA P,SCAIELLA U.TAGME:on-the-fly annotation of short text fragments (by Wikipedia entities)[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management,2010:1625-1628. [84] USBECK R,NGONGA NGOMO A C,R?DER M,et al.AGDISTIS-graph-based disambiguation of named entities using linked data[C]//International Semantic Web Conference.Cham:Springer,2014:457-471. [85] 王昊奋,漆桂林,陈华钧.知识图谱:方法、实践与应用[M].北京:电子工业出版社,2019. WANG H F,QI G L,CHEN H J.Knowledge graph:method,practice and application[M].Beijing:Publishing House of Electronics Industry,2019. [86] ZHANG Y,DAI H,YUN Y,et al.Meta-knowledge dictionary learning on 1-bit response data for student knowledge diagnosis[J].Knowledge-Based Systems,2020,205:106290. [87] SONG Y,JEONG S,KIM H.Semi-automatic construction of a named entity dictionary for entity-based sentiment analysis in social media[J].Multimedia Tools and Applications,2017,76(9):11319-11329. [88] DANG F R,TANG J T,PANG K Y,et al.Constructing an educational knowledge graph with concepts linked to Wikipedia[J].Journal of Computer Science and Technology,2021,36(5):1200-1211. [89] 陈烨,周刚,卢记仓.多模态知识图谱构建与应用研究综述[J].计算机应用研究,2021,38(12):3535-3543. CHEN Y,ZHOU G,LU J C.Survey on construction and application research for multi-modal knowledge graphs[J].Application Research of Computers,2021,38(12):3535-3543. [90] AKHTAR W,KOPECKY J,KRENNWALLNER T,et al.XSPARQL:traveling between the XML and RDF worlds-and avoiding the XSLT pilgrimage[C]//5th European Semantic Web Conference.Berlin,Heidelberg:Springer,2008:432-447. [91] SCHARFFE F,BIHANIC L,KéPéKLIAN G,et al.Enabling linked data publication with the Datalift platform[C]//Workshops at the 26th AAAI Conference on Artificial Intelligence,2012. [92] 熊晶,焦清局,刘运通.基于多源异构数据的甲骨学知识图谱构建方法研究[J].浙江大学学报(理学版),2020,47(2):131-141. XIONG J,JIAO Q J,LIU Y T.Oracle bone studies knowledge graph construction based on multisource heterogeneous data[J].Journal of Zhejiang University(Science Edi-tion),2020,47(2):131-141. [93] 蒋秉川,万刚,许剑,等.多源异构数据的大规模地理知识图谱构建[J].测绘学报,2018,47(8):1051-1061. JIANG B C,WAN G,XU J,et al.Geographic knowledge graph building extracted from multi-sourced heterogeneous data[J].Acta Geodaetica et Cartographica Sinica,2018,47(8):1051-1061. [94] 李涓子,侯磊.知识图谱研究综述[J].山西大学学报(自然科学版),2017,40(3):454-459. LI J Z,HOU L.Reviews on knowledge graph research[J].Journal of Shanxi University(Natural Science Edition),2017,40(3):454-459. [95] 陈志云,商月,钱冬明.基于知识图谱的智能答疑系统研究[J].计算机应用与软件,2018,35(2):178-182. CHEN Z Y,SHANG Y,QIAN D M.Research on intelligent question answering system based on knowledge graph[J].Computer Applications and Software,2018,35(2):178-182. [96] LAO N,COHEN W W.Relational retrieval using a combination of path-constrained random walks[J].Machine Learning,2010,81(1):53-67. [97] 钟卓,唐烨伟,钟绍春,等.人工智能支持下教育知识图谱模型构建研究[J].电化教育研究,2020,41(4):62-70. ZHONG Z,TANG H W,ZHONG S C,et al.Research on constructing model of educational knowledge map supported by artificial intelligence[J].e-Education Research,2020,41(4):62-70. [98] 张春霞,彭成,罗妹秋,等.数学课程知识图谱构建及其推理[J].计算机科学,2020,47(S2):573-578. ZHANG C X,PENG C,LUO M Q,et al.Construction of mathematics course knowledge graph and its reasoning[J].Computer Science,2020,47(S2):573-578. [99] 杨洋,邸一得,刘俊晖,等.基于张量分解的排序学习在个性化标签推荐中的研究[J].计算机科学,2020,47(S2):515-519. YANG Y,DI Y D,LIU J H,et al.Study on learning to rank based on tensor decomposition in personalized tag recommendation[J].Computer Science,2020,47(S2):515-519. [100] 马忠贵,倪润宇,余开航.知识图谱的最新进展、关键技术和挑战[J].工程科学学报,2020,42(10):1254-1266. MA Z G,NI R Y,YU K H.Recent advances,key techniques and future challenges of knowledge graph[J].Chinese Journal of Engineering,2020,42(10):1254-1266. [101] VIZCARRA J,NISHIMURA S,FUKUDA K.Ontology-based human behavior indexing with multimodal video data[C]//2021 IEEE 15th International Conference on Semantic Computing,2021:262-267. [102] 由丽萍,郎宇翔.基于商品评论语义分析的情感知识图谱构建与查询应用[J].情报理论与实践,2018,41(8):132-136. YOU L P,LANG Y X.Construction and query application of emotion knowledge graph based on semantic analysis of product reviews[J].Information Studies:Theory & Application,2018,41(8):132-136. [103] 马飞翔,廖祥文,於志勇,等.基于知识图谱的文本观点检索方法[J].山东大学学报(理学版),2016,51(11):33-40. MA F X,LIAO X W,YU Z Y,et al.A text opinion retrieval method based on knowledge graph[J].Journal of Shandong University(Science Edition),2016,51(11):33-40. [104] KANNAN A V,FRADKIN D,AKROTIRIANAKIS I,et al.Multimodal knowledge graph for deep learning papers and code[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management,2020:3417-3420. [105] 郝林雪,张鹏,宋大为,等.融合知识图谱的查询扩展模型及其稳定性研究[J].计算机科学与探索,2017,11(1):37-45. HAO L X,ZHANG P,SONG D W,et al.Research on knowledge graph based query expansion model and its retrieval stability[J].Journal of Frontiers of Computer Science and Technology,2017,11(1):37-45. [106] TURING A M.Computing machinery and intelligence[J].Mind,1950,59(236):433-460. [107] WANG L.An improved knowledge graph question answering system for English teaching[J].Mobile Information Systems,2022.DOI:10.1155/2022/3401074. [108] 余胜泉,彭燕,卢宇.基于人工智能的育人助理系统——“AI好老师”的体系结构与功能[J].开放教育研究,2019,25(1):25-36. YU S Q,PENG Y,LU Y.An artificial intelligence assistant system for educating people:the structure and function of “AI educator”[J].Education Research,2019,25(1):25-36. [109] 祝智庭.CAI的教学策略设计(之四)[J].电化教育研究,1998,29(4):49-52. ZHU Z T.Teaching strategy design of CAI (Part 4)[J]. e-Education Research,1998,29(4):49-52. [110] 唐烨伟,茹丽娜,范佳荣,等.基于学习者画像建模的个性化学习路径规划研究[J].电化教育研究,2019,40(10):53-60. TANG Y W,RU L N,FAN J R,et al.Research on planning of personalized learning path based on learner portrait modeling[J].e-Education Research,2019,40(10):53-60. [111] 沈杰,乔少杰,韩楠,等.融合多信息的个性化推荐模型[J].重庆理工大学学报(自然科学),2021,35(3):128-138. SHEN J,QIAO S J,HAN N,et al.Personalized recommendation model with multiple information fusion[J].Journal of Chongqing University of Technology(Natural Science),2021,35(3):128-138. [112] 吴昊,徐行健,孟繁军.课程资源的融合知识图谱多任务特征推荐算法[J].计算机工程与应用,2021,57(21):132-139. WU H,XU X J,MENG F J.Knowledge graph-assisted multitask feature-based course recommendation algorithm[J].Computer Engineering and Applications,2021,57(21):132-139. [113] 高嘉骐,刘千慧,黄文彬.基于知识图谱的学习路径自动生成研究[J].现代教育技术,2021,31(7):88-96. GAO J J,LIU Q H,HUANG W B.Research on automatic generation of learning paths based on knowledge graph[J].Modern Educational Technology,2021,31(7):88-96. [114] ZHU H,LIU Y,TIAN F,et al.A cross-curriculum video recommendation algorithm based on a video-associated knowledge map[J].IEEE Access,2018,6:57562-57571. [115] 师亚飞,彭红超,童名文.基于学习画像的精准个性化学习路径生成性推荐策略研究[J].中国电化教育,2019 (5):84-91. SHI Y F,PENG H C,TONG M W.Research on generative paths recommendation strategies of precisive personalized learning based on learning profile[J].China Educational Technology,2019(5):84-91. [116] 李青,闫宇.新技术视域下的教学创新:从趣悦学习到机器人陪伴学习——英国开放大学《创新教学报告》(2019版)解读[J].远程教育杂志,2019,37(2):15-24. LI Q,YAN Y.Innovating pedagogies with technology:from playful learning to learning with robots:introductions to innovating pedagogy report 2019[J].Journal of Distance Education,2019,37(2):15-24. [117] 陈恩红,刘淇,王士进,等.面向智能教育的自适应学习关键技术与应用[J].智能系统学报,2021,16(5):886-898. CHEN E H,LIU Q,WANG S J,et al.Key techniques and application of intelligent education oriented adaptive learning[J].CAAI Transactions on Intelligent Systems,2021,16(5):886-898. [118] 卢宇,薛天琪,陈鹏鹤,等.智能教育机器人系统构建及关键技术——以“智慧学伴”机器人为例[J].开放教育研究,2020,26(2):83-91. LU Y,XUE T Q,CHEN P H,et al.A study on the system design and key technologies of an AI-driven ed-ucational robot:taking the “smart learning partner” as an example[J].Open Education Research,2020,26(2):83-91. [119] 汪时冲,方海光,张鸽,等.人工智能教育机器人支持下的新型“双师课堂”研究——兼论“人机协同”教学设计与未来展望[J].远程教育杂志,2019,37(2):25-32. WANG S C,FANG H G,ZHANG G,et al.Research on the new “double teacher classroom” supported by artificial intelligence educational robots:discuss about “human-machine collaboration” instructional design and future expectation[J].Journal of Distance Education,2019,37(2):25-32. |
[1] | 刘振,王甦菁,李擎. 基于多任务中级特征个性化学习的微表情识别[J]. 计算机工程与应用, 2019, 55(18): 151-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||