计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (1): 126-139.DOI: 10.3778/j.issn.1002-8331.2207-0006
顾清华,骆家乐,李学现
GU Qinghua, LUO Jiale, LI Xuexian
摘要: 进化算法求解多目标优化问题平衡收敛性和多样性面临的主要挑战在两个方面:增强对帕累托最优前沿的选择压力和获得多样性良好的解集。然而,随着目标维数的增加,基于帕累托支配关系的选择标准无法有效地解决以上问题。因此,设计了一种基于小生境的多目标进化算法。基于小生境,提出了一种新的支配关系,其中,设计了一个聚合函数和一种采用目标向量角的密度估计方法分别度量候选解的收敛度和分布性。为了保证解集的收敛性,在同一个小生境内,仅仅收敛度最好的解是非支配解。为了维护解集的多样性,在任何两个不同的小生境内,一个小生境内兼具收敛度和分布性良好的解支配另一个小生境内收敛性和分布性均差的解,将提出的支配关系嵌入VaEA取代帕累托支配关系,设计了一种多目标进化算法VaEA-SDN。VaEA-SDN与NSGA-III、VaEA、MSEA、NSGAII-CSDR、RPS-NSGAII以及CDR-MOEA等先进的算法在DTLZ(Deb-Thiele-Laumanns-Zitzler)和MaF(many-objective function)基准测试系列问题上进行了广泛的对比仿真实验。仿真结果表明,VaEA-SDN平衡收敛收敛性和多样性的能力分别比被比较的6个算法平均高37.7%、32.9%、31.8%、22.2%、43.5%、30.2%。