计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (3): 15-33.DOI: 10.3778/j.issn.1002-8331.2106-0351
熊中敏,马海宇,李帅,张娜
出版日期:
2022-02-01
发布日期:
2022-01-28
XIONG Zhongmin, MA Haiyu, LI Shuai, ZHANG Na
Online:
2022-02-01
Published:
2022-01-28
摘要: 知识图谱主要用于从复杂数据中抽取出关键信息以生成关系网络,其对于复杂关系出色的识别能力以及对于数据较强的描述能力使得知识图谱技术具有很高的应用价值。为给知识图谱在海洋领域的应用提供理论支撑,对知识图谱相关技术进行了总体概述。阐述Citespace文献分析工具的出色应用,针对海洋领域半结构化和非结构化数据抽取技术进行了系统整理,并分析了诸如命名实体识别、关系抽取、事件抽取、知识融合以及知识推理等关键性技术的原理及后续改进,对海洋领域应用知识图谱技术的落地场景及未来前景进行总结与展望。
熊中敏, 马海宇, 李帅, 张娜. 知识图谱在海洋领域的应用及前景分析综述[J]. 计算机工程与应用, 2022, 58(3): 15-33.
XIONG Zhongmin, MA Haiyu, LI Shuai, ZHANG Na. Summary of Application and Prospect Analysis of Knowledge Graphs in Marine Field[J]. Computer Engineering and Applications, 2022, 58(3): 15-33.
[1] 蔡煜婷.基于文本挖掘的中国海洋政策分析[D].广州:暨南大学,2020. CAI Y T.An analysis of China’s marine policy based on text mining[D].Guangzhou:Jinan University,2020. [2] FENSEL D,?IM?EK U,ANGELE K,et al.Introduction:what is a knowledge graph?[M]//Knowledge graphs.Cham:Springer,2020:1-10. [3] FENSEL D,?IMSEKU,ANGELE K,et al.Knowledge graphs:methodology,tools and selected use cases[M].[S.l.]:Springer International Publishing,2020:4-15. [4] CHEN X,JIA S,XIANG Y.A review:knowledge reasoning over knowledge graph[J].Expert Systems with Applications,2020,141:112948. [5] 钱双双.金融领域的知识图谱构建与应用[D].杭州:浙江工业大学,2020. QIAN S S.Construction and application of knowledge graph in financial field[D].Hangzhou:Zhejiang University of Technology,2020. [6] 程悦.知识图谱在中学道德教育中的运用研究[D].广州:广州大学,2019. CHENG Y.Research on the application of knowledge graphs of moral education in middle school[D].Guangzhou:Guangzhou University,2019. [7] 张青岭,李显正,李航宇,等.知识图谱在农业中的应用[J].电子技术与软件工程,2019(7):245-247. ZHANG Q L,LI X Z,LI H Y,et al.Application of knowledge graph in agriculture[J].Electronic Technology & Software Engineering,2019(7):245-247. [8] NARARATWONG R,KERTKEIDKACHORN N,ICHISE R.Knowledge graph visualization:challenges,framework,and implementation[C]//2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering(AIKE),2020:174-178. [9] 王勇超,罗胜文,杨英宝,等.知识图谱可视化综述[J].计算机辅助设计与图形学学报,2019,31(10):1666-1676. WANG Y C,LUO S W,YANG Y B,et al.A survey on knowledge graphs visualization[J].Journal of Computer-Aided Design & Computer Graphics,2019,31(10):1666-1676. [10] 李杰,陈超美.CiteSpace:科技文本挖掘及可视化[M].北京:首都经济贸易大学出版社,2017:138-177. LI J,CHEN C M.Text mining and visualization in scientific literature[M].Beijing:Capital University of Economics and Business Press,2017:138-177. [11] HENRY S.Co-citation in the scientific literature:a new measure of the relationship between two documents[J].Beijing:Journal of the American Society for Information Science,1973,24(4):265-269. [12] KESSLER M M.Bibliographic coupling between scientific papers[J].Journal of the American Society for Information Science & Technology,1963,14(1):10-25. [13] 付健,丁敬达.CiteSpace和VOSviewer软件的可视化原理比较[J].农业图书情报,2019,31(10):31-37. FU J,DING J D.Comparison of visualization principles between CiteSpace and VOSviewer[J].Journal of Library and Information Science in Agriculture,2019,31(10):31-37. [14] VAN ECK N J,WALTMAN L.Software survey:VOSviewer,a computer program for bibliometric mapping[J].Scientometrics,2010,84(2):523-538. [15] ORDU?A-MALEA E,COSTAS R.Link-based approach to study scientific software usage:the case of VOSviewer[J].Scientometrics,2021,95(1):1-34. [16] EVERTON S F.Disrupting dark network[M].[S.l.]:Cambridge University Press,2012:49-75. [17] 刘启元,叶鹰.文献题录信息挖掘技术方法及其软件SATI的实现—以中外图书情报学为例[J].信息资源管理学报,2012,2(1):50-58. LIU Q Y,YE Y.A study on mining bibliographic records by designed software SATI:case study on library and information science[J].Journal of Information Resources Management,2012,2(1):50-58. [18] 周超峰.文献计量常用软件比较研究[D].武汉:华中师范大学,2017. ZHOU C F.Comparative study of commonly used software for bibliometrics[D].Wuhan:Central China Normal University,2017. [19] 刘军.整体网分析讲义:UCINET软件使用指南[M].上海:格致出版社,2009:6-16. LIU J.Lectures on whole network approach:a practical guide to UCINET[M].Shanghai:Gezhi Publishing House,2009:6-16. [20] 贠强,赵蕴华,陈颖健.世界海洋水产养殖业知识创新与技术创新图谱分析[J].数字图书馆论坛,2009(12):62-69. YUN Q,ZHAO Y H,CHEN Y J.Knowledge and technology innovation graphs analysis of the world marine aquaculture industry.[J].Digital Library Forum,2009(12):62-69. [21] 韩增林,李彬,张坤领,等.基于CiteSpace中国海洋经济研究的知识图谱分析[J].地理科学,2016,36(5):643-652. HAN Z L,LI B,ZHANG K L,et al.Knowledge structure of China’s marine economy research:an analysis based on CiteSpace map[J].Scientia Geographica Sinica,2016,36(5):643-652. [22] 张福俊,叶权慧,于路云.基于知识图谱的海洋科学领域技术机会分析[J].科技管理研究,2017,37(24):165-170. ZHANG F J,YE Q H,YU L Y.Analysis of technical opportunity in marine science field based on knowledge graph[J].Science and Technology Management Research,2017,37(24):165-170. [23] 吕阳.国际海洋药物研究动态与发展趋势[J].海洋科学,2018,42(10):94-102. LU Y.Research activities and development trends in international marine drug research[J].Marine Sciences,2018,42(10):94-102. [24] 马丽丽,殷建平,吴跃伟,等.国际珊瑚礁领域研究现状及知识图谱分析[J].海洋科学,2018,42(11):118-125. MA L L,YIN J P,WU Y W,et al.Research status and knowledge mapping analysis of international coral reefs[J].Marine Sciences,2018,42(11):118-125. [25] 胡瑾秋,张来斌,马曦,等.海洋油气安全生产领域的知识图谱研究[J].安全,2019,40(12):15-20. HU J Q,ZHANG L B,MA X,et al.Research on the knowledge graph of safety production research in offshore oil and gas industries[J].Safety & Security,2019,40(12):15-20. [26] 赵玲,吴雁萍.基于文献计量法的中国海洋文化研究20年回顾[J].上海海洋大学学报,2021,30(2):374-381. ZHAO L,WU Y P.A review of 20 years of Chinese marine culture research based on bibliometric method[J].Journal of Shanghai Ocean University,2021,30(2):374-381. [27] 刘金立,陈鹏,邵征翌,等.全球主要渔业国家水产科学研究态势及其热点透视[J].水产学报,2019,43(12):2584-2596. LIU J L,CHEN P,SHAO Z Y,et al.Research trends and hotspots of fisheries science in major fisheries countries in the world[J].Journal of Fisheries of China,2019,43(12):2584-2596. [28] 刘金立,陈新军.世界大洋性鱿钓渔业研究评述[J].上海海洋大学学报,2019,28(3):331-343. LIU J L,CHEN X J.Bibliometrics research of document on the theme of oceanic squid jigging fishery in the world[J].Journal of Shanghai Ocean University,2019,28(3):331-343. [29] 赵奇蕾,陈新军,韩博.国际休闲渔业研究进展[J].上海海洋大学学报,2020,29(2):295-304. ZHAO Q L,CHEN X J,HAN B.Review on the research of recreational fisheries in the world[J].Journal of Shanghai Ocean University,2020,29(2):295-304. [30] 陈芃.海洋酸化对全球渔业及东白令海渔业资源的影响[D].上海:上海海洋大学,2020. CHEN P.The influence of ocean acidification to the global fisheries and regional fisheries resources(East Bering Sea)[D].Shanghai:Shanghai Ocean University,2020. [31] 刘金立,陈新军.长江流域生物资源及生态环境研究进展[J].上海海洋大学学报,2020,29(2):255-267. LIU J L,CHEN X J.Bibliometrics research of documents on biological resources and ecological environment in the Yangtze River Basin of China[J].Journal of Shanghai Ocean University of China,2020,29(2):255-267. [32] 李京梅,张金哲.海洋生态系统服务价值的知识图谱—基于CiteSpace的计量分析[J].海洋开发与管理,2021,38(5):64-69. LI J M,ZHANG J Z.Knowledge map of the value of marine ecosystem services:metrological analysis based on CiteSpace[J].Ocean Development and Management,2021,38(5):64-69. [33] 许瑞恒,姜旭朝.中国海洋产业经济研究热点的动态演变——基于CNKI数据库的分析[J].中国渔业经济,2020,38(1):84-91. XU R H,JIANG X C.Dynamic evolution of hotspots in research of China’s marine industry economy:based on analysis of CNKI[J].China Fisheries Economics,2020,38(1):84-91. [34] 刘烨宸,李华昱.领域知识图谱研究综述[J].计算机系统应用,2020,29(6):1-12. LIU Y C,LI H Y.Survey on domain knowledge graph research[J].Computer Systems & Applications,2020,29(6):1-12. [35] 付雷杰,曹岩,白瑀,等.国内垂直领域知识图谱发展现状与展望[J].计算机应用研究,2021,38(11):3201-3214. FU L J,CAO Y,BAI Y.et al.Development status and prospect of vertical domain knowledge graph in China[J].Application Research of Computers,2021,38(11):3201-3214. [36] HUANG D,ZHAO D,WEI L,et al.Modeling and analysis in marine big data:advances and challenges[J].Mathematical Problems in Engineering,2015. [37] RODRIGUEZ T,AGUILAR J.Knowledge extraction system from unstructured documents[J].IEEE Latin America Transactions,2018,16(2):639-646. [38] SANG E F,DE MEULDER F.Introduction to the CoNLL-2003 shared task:language-independent named entity recognition[J].arXiv:0306050,2003. [39] 刘浏,王东波.命名实体识别研究综述[J].情报学报,2018,37(3):329-340. LIU L,WANG D B.A review on named entity recognition[J].Journal of the China Society for Scientific and Technical Information,2018,37(3):329-340. [40] BIKEL D M,SCHWARTZ R,WEISCHEDEL R M.An algorithm that learns what’s in a name[J].Machine Learning,1999,34(1):211-231. [41] 郑鹏.深海浮标数据采集系统的研究与实现[D].济南:山东大学,2014. ZHENG P.Research and realization of data acquisition system for Deep Sea Buoy[D].Jinan:Shandong University,2014. [42] MCCALLUM A,LI W.Early results for named entity recognition with conditional random fields,feature induction and web-enhanced lexicons[C]//Proceedings of the 7th Conference on Neural Language Learning at HLT-NAACL,2003. [43] JIA B,WU Z,WU B,et al.Enhanced character embedding for Chinese named entity recognition[J].Measurement and Control,2020,53(9/10):1669-1681. [44] LI J,SUN A,HAN J,et al.A survey on deep learning for named entity recognition[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(1):50-70. [45] LAMPLE G,BALLESTEROS M,SUBRAMANIAN S,et al.Neural architectures for named entity recognition[C]//Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics,2016:260-270. [46] MA X,HOVY E.End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of 54th Annual Meeting of the Association for Computational Linguistics,2016:1064-1074. [47] STRUBELL E,VERGA P,BELANGER D,et al.Fast and accurate entity recognition with iterated dilated convolutions[J].arXiv:1702.02098,2017. [48] 贺琳,张雨,巴韩飞.基于注意力机制和深度学习模型的外来海洋生物命名实体识别[J].大连海洋大学学报,2021,36(3):503-509. HE L,ZHANG Y,BA H F.Named entity recognition of exotic marine organisms based on attention mechanism and deep learning network[J].Journal of Dalian Fisheries University,2021,36(3):503-509. [49] REI M,CRICHTON G,PYYSALO S.Attending to characters in neural sequence labeling models[C]//Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers,2016:309-318. [50] CHOROWSKI J,BAHDANAU D,SERDYUK D,et al.Attention-based models for speech recognition[J].arXiv:1506.07503,2015. [51] HE S F,SUN D Q,WANG Z.Named entity recognition for Chinese marine text with knowledge-based self-attention[J].Multimedia Tools and Applications,2021:1-15. [52] JI S,PAN S,CAMBRIA E,et al.A survey on knowledge graphs:representation,acquisition,and applications[J].IEEE Transactions on Neural Networks and Learning Systems,2021. [53] ZENG D,LIU K,LAI S,et al.Relation classification via convolutional deep neural network[C]//Proceedings of COLING 2014,the 25th International Conference on Computational Linguistics:Technical Papers,2014:2335-2344. [54] WANG L,CAO Z,DE M G,et al.Relation classification via multi-level attention CNNs[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,2016:1298-1307. [55] WU S,HE Y.Enriching pre-trained language model with entity information for relation classification[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management,2019:2361-2364. [56] MINTZ M,BILLS S,SNOW R,et al.Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP,2009:1003-1011. [57] ZENG D,LIU K,CHEN Y,et al.Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,2015:1753-1762. [58] JI G,LIU K,HE S,et al.Distant supervision for relation extraction with sentence-level attention and entity descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2017. [59] QIN P,XU W,WANG W Y.DSGAN:generative adversarial training for distant supervision relation extraction[J].arXiv:1805.09929,2018. [60] FENG J,HUANG M,ZHAO L,et al.Reinforcement learning for relation classification from noisy data[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,New Orleans,Louisiana,USA,2018:5779-5786. [61] ZHENG S,HAN X,LIN Y,et al.DIAG-NRE:a neural pattern diagnosis framework for distantly supervised neural relation extraction[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics,Florence,Italy,2019:1419-1429. [62] 赵军,刘康,何世柱,等.知识图谱[J].中文信息学报,2020,34(9):111. ZHAO J,LIU K,HE S Z,et al.Knowledge graph[J].Journal of Chinese Information Processing,2020,34(9):111. [63] AHN D.The stages of event extraction[C]//Proceedings of the Workshop on Annotating and Reasoning about Time and Events.Sydney,Australia:Association for Computational Linguistics,2006:1-8. [64] LI Q,JI H,HUANG L.Joint event extraction via structured prediction with global features[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics,2013:73-82. [65] CHEN Y,XU L,LIU K,et al.Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing,Beijing,China,2015:167-176. [66] TIAN C,ZHAO Y,REN L.A Chinese event relation extraction model based on Bert[C]//2019 2nd International Conference on Artificial Intelligence and Big Data,2019:271-276. [67] ZHANG J,HONG Y,ZHOU W,et al.Interactive learning for joint event and relation extraction[J].International Journal of Machine Learning and Cybernetics,2020,11(2):449-461. [68] MüLLER C,MEUTHRATH B,BAUMGRA? A.Analyzing Wiki-based networks to improve knowledge processes in organizations[C]//Proceedings of 7th International Conference on Knowledge Management,2007. [69] REBELE T,SUCHANEK F,HOFFART J,et al.YAGO:a multilingual knowledge base from Wikipedia,wordnet,and geonames[C]//International Semantic Web Conference.Cham:Springer,2016:177-185. [70] BIZER C,LEHMANN J,KOBILAROV G,et al.DBpedia-a crystallization point for the Web of Data[J].Journal of Web Semantics,2009,7(3):154-165. [71] SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a large ontology from Wikipedia and wordnet[J].Journal of Web Semantics,2008,6(3):203-217. [72] LEHMANN J,ISELE R,JAKOB M,et al.Dbpedia-a large-scale,multilingual knowledge base extracted from Wikipedia[J].Semantic Web,2015,6(2):167-195. [73] 王兰.基于维基百科的渔业知识库构建研究[D].上海:上海海洋大学,2014. WANG L.The task of building fishery knowledge base based on Wikipedia[D].Shanghai:Shanghai Ocean University,2014. [74] 王昊奋,漆桂林,陈华钧.知识图谱:方法、实践与应用[J].自动化博览,2020,37(1):7. WANG H F,QI G L,CHEN H J.Knowledge graph:methods,practice and application[J].Automation Panorama,2020,37(1):7. [75] 林海伦,王元卓,贾岩涛,等.面向网络大数据的知识融合方法综述[J].计算机学报,2017,40(1):1-27. LIN H L,WANG Y Z,JIA Y T,et al.Network big data oriented knowledge fusion methods:a survey[J].Chinese Journal of Computers,2017,40(1):1-27. [76] 陆伟,武川.实体链接研究综述[J].情报学报,2015,34(1):105-112. LU W,WU C.Literature review on entity linking[J].Journal of the China Society for Scientific and Technical Information,2015,34(1):105-112. [77] 郑迪.实体识别与链接的研究与实现[D].北京:北京邮电大学,2017. ZHENG D.Research and implementation of entity recognition and linking system[D].Beijing:Beijing University of Posts and Telecommunications,2017. [78] 段宗涛,李菲,陈柘.实体消歧综述[J].控制与决策,2021,36(5):1025-1039. DUAN Z T,LI F,CHEN Z.Entity disambiguation:a review[J].Control and Decision,2021,36(5):1025-1039. [79] PHAN M C,SUN A,TAY Y,et al.NeuPL:attention-based semantic matching and pair-linking for entity disambiguation[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,2017:1667-1676. [80] HU L,DING J,SHI C,et al.Graph neural entity disambiguation[J].Knowledge-Based Systems,2020,195:105620. [81] CHENG J,PAN C,DANG J,et al.Entity linking for Chinese short texts based on bert and entity name embeddings[C]//China Conference on Knowledge Graph and Semantic Computing,2019. [82] TAN C H,AGICHTEIN E,IPEIROTIS P,et al.Trust,but verify:predicting contribution quality for knowledge base construction and curation[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining,2014:553-562. [83] DESHPANDE O,LAMBA D S,TOURN M,et al.Building,maintaining,and using knowledge bases:a report from the trenches[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data,2013:1209-1220. [84] MENDES P N,MüHLEISEN H,BIZER C.Sieve:linked data quality assessment and fusion[C]//Proceedings of the 2012 Joint EDBT/ICDT Workshops,2012:116-123. [85] 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582. LIU Q,LI Y,DUAN H,et al.Knowledge graph construction techniques[J].Journal of Computer Research and Development,2016,53(3):582. [86] 马忠贵,倪润宇,余开航.知识图谱的最新进展、关键技术和挑战[J].工程科学学报,2020,42(10):1254-1266. MA Z G,NI R Y,YU K H.Recent advances,key techniques and future challenges of knowledge graph[J].Chinese Journal of Engineering,2020,42(10):1254-1266. [87] CHEN X,CHEN H,ZHANG N,et al.Owl reasoning over big biomedical data[C]//2013 IEEE International Conference on Big Data,2013:29-36. [88] SCHOENMACKERS S,DAVIS J,ETZIONI O,et al.Learning first-order horn clauses from web text[C]//Proceedings of the 2010 Conference on Empirical Methods on Natural Language Processing,2010:1088-1098. [89] MITCHELL T,COHEN W,HRUSCHKA E,et al.Never-ending learning[J].Communications of the ACM,2018,61(5):103-115. [90] LAO N,COHEN W W.Relational retrieval using a combination of path-constrained random walks[J].Machine Learning,2010,81(1):53-67. [91] BORDES A,USUNIER N,GARCIA D A,et al.Translating embeddings for modeling multi-relational data[C]//Neural Information Processing Systems(NIPS),2013:1-9. [92] WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2014. [93] LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence,2015:2181-2187. [94] JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing,2015:687-696. [95] HAN X,MINLIE H,XIAO Y Z.TransG:a generative model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,Berlin,Germany,2016:2316-2325. [96] SUN Z,DENG Z H,NIE J Y,et al.RotatE:knowledge graph embedding by relational rotation in complex space[C]//7th International Conference on Learning Representations,2019. [97] DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence,2018. [98] NGUYEN D Q,NGUYEN T D,NGUYEN D Q,et al.A novel embedding model for knowledge base completion based on convolutional neural network[J].arXiv:1712.02121,2017. [99] VU T,NGUYEN T D,NGUYEN D Q,et al.A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2019:2180-2189. [100] SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems,2017. [101] 阮彤,王梦婕,王昊奋,等.垂直知识图谱的构建与应用研究[J].知识管理论坛,2016,1(3):226-234. RUAN T,WANG M J,WANG H F,et al.Research on the construction and application of vertical knowledge graphs[J].Knowledge Management Forum,2016,1(3):226-234. [102] 李琦.基于机器翻译与知识图谱的船舶信息智能查询研究[D].大连:大连海事大学,2020. LI Q.Research on intelligent query of ship information based on machine translation and knowledge graph[D].Dalian:Dalian Maritime University,2020. [103] 任梦星.面向舰船知识领域的知识图谱构建关键技术研究[D].北京:中国科学院大学,2020. REN M X.Research on intelligent query technology of ship information based on machine translation and Knowledge Graph[D].Beijing:University of Chinese Academy of Sciences,2020. |
[1] | 陈智罡, 宋新霞, 郑梦策, 刘天成. 全同态加密文献计量分析研究[J]. 计算机工程与应用, 2022, 58(4): 40-51. |
[2] | 冯钧, 张涛, 杭婷婷. 重叠实体关系抽取综述[J]. 计算机工程与应用, 2022, 58(1): 1-11. |
[3] | 宋浩楠, 赵刚, 孙若莹. 基于深度强化学习的知识推理研究进展综述[J]. 计算机工程与应用, 2022, 58(1): 12-25. |
[4] | 张宇, 郭文忠, 林森, 文朝武, 龙洁花. 深度学习与知识推理相结合的研究综述[J]. 计算机工程与应用, 2022, 58(1): 56-69. |
[5] | 杨倩,顾磊. 基于去噪字词联合模型的中文命名实体识别[J]. 计算机工程与应用, 2021, 57(7): 151-157. |
[6] | 王友发,周圆圆,罗建强. 近20年智能制造研究热点与前沿挖掘[J]. 计算机工程与应用, 2021, 57(6): 49-57. |
[7] | 彭昭勇,伍权,陈华伟,郑跃,王书祥. 基于文献计量的机器视觉缺陷检测研究述评[J]. 计算机工程与应用, 2021, 57(4): 28-34. |
[8] | 刘藤,陈恒,李冠宇. 联合FOL规则的知识图谱表示学习方法[J]. 计算机工程与应用, 2021, 57(4): 100-107. |
[9] | 卢琪,潘志松,谢钧. 融合知识表示学习的双向注意力问答模型[J]. 计算机工程与应用, 2021, 57(23): 171-177. |
[10] | 武书钊,李功权,卜明伟. 基于知识图谱的自杀倾向检测问答系统构建[J]. 计算机工程与应用, 2021, 57(22): 304-312. |
[11] | 江洋洋,金伯,张宝昌. 深度学习在自然语言处理领域的研究进展[J]. 计算机工程与应用, 2021, 57(22): 1-14. |
[12] | 吴昊,徐行健,孟繁军. 课程资源的融合知识图谱多任务特征推荐算法[J]. 计算机工程与应用, 2021, 57(21): 132-139. |
[13] | 黄梅根,刘佳乐,刘川. 基于BERT的中文多关系抽取方法研究[J]. 计算机工程与应用, 2021, 57(21): 234-240. |
[14] | 隗昊,周爱,张益嘉,陈飞,屈雯,鲁明羽. 深度学习生物医学实体关系抽取研究综述[J]. 计算机工程与应用, 2021, 57(21): 14-23. |
[15] | 姚贵斌,张起贵. 基于XLnet语言模型的中文命名实体识别[J]. 计算机工程与应用, 2021, 57(18): 156-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||